106. Spectral Resolution of a Certain Summation of Series

By Shigeru Maeda
Department of Industrial Management, Osaka Institute of Technology
(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1988)

1. Introduction. This paper deals with the spectral resolution of a certain summation of series, the final aim being to give a method of solving recurrences involving the summation by means of its spectral decomposition. Let L denote a real linear space composed of all sequences of real numbers, and a small letter, for example, a is used to mean its element $\left\{a_{1}, a_{2}, \cdots\right\}\left(a_{i} \in R\right)$. Our summation T_{d} is a linear transformation on L defined by

$$
\begin{equation*}
T_{d}: a \longmapsto b, \quad b_{i}=\frac{1}{d^{i}} \sum_{j=1}^{i}\binom{i}{j}(d-1)^{i-j} a_{j} \quad(i=1,2, \cdots), \tag{1}
\end{equation*}
$$

where d is a positive number. This summation of series is closely related to the Euler summation [1].
2. Spectral resolution of $T_{d^{*}}$. In this section, we prove that $\left\{T_{a}\right\}_{a>0}$ is a representation of a multiplicative group, and derive the spectral resolution with the use of its group property. Let us start by showing a lemma.

Lemma 1. Let d_{1}, d_{2} and d be positive numbers, and we have

$$
T_{d_{1}} \circ T_{d_{2}}=T_{d_{1} d_{2}}, \quad T_{1}=I, \quad\left(T_{d}\right)^{-1}=T_{1 / d}
$$

Proof. Suppose that

$$
b_{i}=\frac{1}{d_{2}^{i}} \sum_{j=1}^{i}\binom{i}{j}\left(d_{2}-1\right)^{i-j} a_{j} \quad \text { and } \quad c_{k}=\frac{1}{d_{1}^{k}} \sum_{i=1}^{k}\binom{k}{i}\left(d_{1}-1\right)^{k-i} b_{i} .
$$

Then, a slight calculation leads to

$$
c_{k}=\frac{1}{\left(d_{1} d_{2}\right)^{k}} \sum_{j=1}^{k}\binom{k}{j}\left(d_{1} d_{2}-1\right)^{k-j} a_{j} .
$$

which proves $T_{d_{1}} \circ T_{d_{2}}=T_{d_{1} d_{2}}$. The remaining two are obvious.
This lemma shows that each T_{d} is a non-singular transformation and further the family $\left\{T_{a}\right\}_{d>0}$ is a representation on L of a Lie group ($\left.R^{+}, x\right)$. Exchange the parameter d for t subject to $d=e^{t}$ and calculate $d /\left.d t\left(T_{d}[a]\right)\right|_{t=0}$ formally. Then, we have the formal generating operator of T_{d} as follows;

$$
\begin{equation*}
-a_{1} \frac{\partial}{\partial a_{1}}+\left(2 a_{1}-2 a_{2}\right) \frac{\partial}{\partial a_{2}}+\cdots+\left(n a_{n-1}-n a_{n}\right) \frac{\partial}{\partial a_{n}}+\cdots \tag{2}
\end{equation*}
$$

For the time being, discussion is made on an m-dimensional linear space \bar{L} which is of the first m terms $\bar{a}=\left\{a_{1}, \cdots, a_{m}\right\}$ of every element of L. It is easy to see from the definition (1) that the action of T_{d} can be restricted on \bar{L}, whose restriction we denote by \bar{T}_{d}. Then, \bar{T}_{d} gives an R^{+}-action on \bar{L} and its generator is expressed as a sum of first m components of (2). Since \bar{T}_{a} is a linear transformation, it is expressed as an m-th order matrix, which is obtained by means of the generator as follows:

$$
\exp \left\{t\left[\begin{array}{rrrl}
-1 & & & \tag{3.a}\\
2 & -2 & \\
& \ddots & \ddots \\
& m & -m
\end{array}\right]\right\}=P\left[\begin{array}{lll}
1 / d & & \\
& 1 / d^{2} & \\
& & \ddots \\
& & 1 / d^{m}
\end{array}\right] P^{-1}
$$

where

$$
P=\left[\begin{array}{ccc}
\binom{1}{1} & & \tag{3.b}\\
\binom{2}{1} & \binom{2}{2} & \ddots \\
\binom{m}{1} & \binom{\dot{m}}{2} & \cdots
\end{array}\binom{m}{m} .\right.
$$

Here, m is chosen arbitrarily, and any (i, j) component of both (3.a) and (3.b) turns out to depend on i and j only. By letting $m \rightarrow \infty$, each column vector of P, which is an eigenvector of (3.a), makes us pay attention to the following sequence of numbers;

$$
\begin{equation*}
a^{(s)}=\{\underbrace{0, \cdots, 0}_{s-1},\binom{s}{s},\binom{s+1}{s}, \cdots\} \quad(s=1,2, \cdots) . \tag{4}
\end{equation*}
$$

Theorem 2. With respect to $\alpha^{(s)}$, it holds that $T_{d}\left[a^{(s)}\right]=\left(1 / d^{s}\right) a^{(s)}(s=1$, 2, ..).

Since slight calculation verifies the equality, we omit the proof. It is to be noted that each $a^{(s)}$ is independent of the value of d. Next, we show that $\left\{a^{(s)}\right\}$ thus obtained forms a basis of L.

Lemma 3. Let θ_{s} be arbitrary real numbers, and $\sum_{s=1}^{\infty} \theta_{s} \theta^{(s)}$ belongs to L. On the contrary, any element $\xi=\left\{\xi_{1}, \xi_{2}, \cdots\right\}$ is expressed as $\xi=\sum_{s=1}^{\infty} \theta_{s} a^{(s)}$, and the expansion coefficient θ_{s} is given by

$$
\begin{equation*}
\theta_{s}=\sum_{i=1}^{s}(-1)^{s-i}\binom{s}{i} \hat{\xi}_{i} . \tag{5}
\end{equation*}
$$

Proof. The former assertion is obvious, for due to (4) each term of $\sum_{s=1}^{\infty} \theta_{s} a^{(s)}$ is a finite sum of real numbers. Concerning the latter one, substitute (5) into $\sum_{s=1}^{\infty} \theta_{s} a^{(s)}$, and we can see that its k-th term is given by

$$
\sum_{s=1}^{k} \sum_{i=1}^{s}(-1)^{s-i}\binom{s}{i} \xi_{i}\binom{k}{s}=\sum_{i=1}^{k} \xi_{i} \sum_{s=i}^{k}(-1)^{s-i}\binom{s}{i}\binom{k}{s}=\sum_{i=1}^{k} \xi_{i}\binom{k}{i} \delta_{k i}=\xi_{k} .
$$

Now, we are in a position to derive the spectral resolution of T_{d}. As is shown in the above lemma, the linear space L is a direct sum of all eigenspaces of T_{d}. Each eigenspace does not depend on the value of d. The projector P_{s} from L onto a one-dimensional subspace generated by $\left\{a^{(s)}\right\}$ is immediately obtained from (5), and we have the final result.

Theorem 4. The summation T_{d} is expressed as $T_{d}=\sum_{s=1}^{\infty}\left(1 / d^{s}\right) P_{s}$, where P_{s} is a projector given by

$$
\left(P_{s}[\xi]\right)_{i}= \begin{cases}\sum_{j=1}^{s}(-1)^{s-j}\binom{s}{j} \xi_{j}\binom{i}{s} & (i \geq s) \\ 0 & (i<s)\end{cases}
$$

With respect to P_{s}, it holds that $P_{s} P_{t}=\delta_{s t} P_{s}$ and $\sum_{s=1}^{\infty} P_{s}=I$.
3. Remarks. By means of the spectral resolution of T_{d}, we can define a linear operator $\varphi\left(T_{d}\right)$ by not necessarily using the Dunford integral formalism. Here, φ is an analytic function whose pole is not equal to $1 / d^{s}$ ($s \geq 1$). If no zero point of φ is equal to $1 / d^{s}$, too, the inverse of $\varphi\left(T_{d}\right)$ is immediately obtained, so that we can obtain the solution of the recurrence of the form $\varphi\left(T_{d}\right)[\xi]=u$, where ξ is unknown and u is given. This type of recurrence is treated, for example, in [2]. Also, it can be verified that T_{d} is a regular transformation when $d \geq 1$, while each projector P_{s} is neither regular nor normal.

References

[1] N. Yanagihara: Theory of Series. Asakura (1962) (in Japanese).
[2] W. Szpankowski: Solution of a linear recurrence equation arising in the analysis of some algorithms. SIAM J. Alg. Disc. Meth., 8, 233-250 (1987).

