11. A Certain Functional Derivative Equation Corresponding to $\Box u + cu + bu^2 + au^3 = g$ on \mathbb{R}^{d+1}

By Atsushi INOUE

Department of Mathematics, Tokyo Institute of Technology

(Communicated by Kôsaku Yosida, M. J. A., Feb. 13, 1989)

Introduction and results. $L_r^p (1 \le p \le \infty, r \in \mathbb{R})$ denotes the space of weighted *p*-summable functions on \mathbb{R}^d with norm given by $|u|_{p,r} = \left(\int_{\mathbb{R}^d} (1+|x|^2)^{rp/2} |u(x)|^p dx\right)^{1/p}$ or $|u|_{\infty,r} = \operatorname{ess.sup}_{x \in \mathbb{R}^d} (1+|x|^2)^{r/2} |u(x)|$. When r=0, we put $L^p = L_0^p$ with $|u|_p = |u|_{p,0}$. For $s \in \mathbb{N}$, $||u||_{s,r} = \left(\int_{\mathbb{R}^d} (1+|x|^2)^r \sum_{|\alpha|\le s} |D^{\alpha}u(x)|^2 dx\right)^{1/2}$ represents the norm of H_r^s , the weighted Sobolev space of order *s* on \mathbb{R}^d . For general $s \in \mathbb{R}$, H_r^s is defined by using the interpolation theory and H^s stands for H_0^s with $||u||_s = ||u||_{s,0}$. The dual space of L_r^p is L_{-r}^q for $1 \le p < \infty$ with 1/p+1/q=1. $H_{-r}^{-s} = (\dot{H}_r^s)^*$ for $s \ge 0$ with $\dot{H}_r^s = \dot{H}_r^s(\mathbb{R}^d)$ $(s \ge 0)$ being the closure of $C_0^\infty(\mathbb{R}^d)$ in H_r^s .

Now, we put $X = {}^{\iota}(V \times L^2)$ and $X^* = V^* \times L^2$ with norms $||U||_{X} = ||u||_{V} + |v|_{2}$ and $||\mathcal{Z}||_{X^*} = ||\xi||_{V^*} + |\eta|_{2}$ for $U = {}^{\iota}(u, v)$ and $\mathcal{Z} = (\xi, \eta)$. Here, $V = H^1 \cap L^4$ and $V^* = H^{-1} + L^{4/3}$ with norms $||u||_{V} = ||u||_{1} + |u|_{4}$ and $||\xi||_{V^*} = \inf_{\xi = \xi_1 + \xi_2} (||\xi_1||_{-1} + |\xi_2|_{4/3})$.

Our aim of this paper is to solve the following problems: Let $0 < T_0 \le \infty$.

(I) Find a functional
$$W(t, \Xi)$$
 on $t \in (0, T_0) \times X^*$ satisfying
(I.1) $\frac{\partial}{\partial t}W(t, \Xi) = \int_{\mathbb{R}^d} \left[\eta(x) \left((\Delta - c) \frac{\delta W(t, \Xi)}{\delta \xi(x)} + ib \frac{\delta^2 W(t, \Xi)}{\delta \xi(x)^2} + a \frac{\delta^3 W(t, \Xi)}{\delta \xi(x)^3} \right) + \xi(x) \frac{\delta W(t, \Xi)}{\delta \eta(x)} + i\eta(x)g(x, t)W(t, \Xi) \right] dx,$
(I.2) $W(t, 0) = 1, \quad W(0, \Xi) = W_0(\Xi).$

Here given data are $W_0(\Xi)$ and g(x, t).

(II) Find a family of Borel measures
$$\{\mu(t, dU)\}_{0 < t < T_0}$$
 on X satisfying
(II) $\int_0^{T_0} \int_X \frac{\partial \Phi(t, U)}{\partial t} \mu(t, dU) dt + \int_X \Phi(0, U) \mu_0(dU)$
 $= -\int_0^{T_0} \int_X \int_{R^d} \left[(\Delta u(x) - f(u(x)) + g(x, t)) \frac{\partial \Phi(t, U)}{\partial v(x)} + v(x) \frac{\partial \Phi(t, U)}{\partial u(x)} \right]$
 $\times dx \mu(t, dU) dt$

for suitable 'test functionals' $\Phi(t, U)$ with given data $\mu_0(dU)$ and g(x, t).

For the notational simplicity, we put here $f(u) = au^3 + bu^2 + cu$, $F(u) = au^4/4 + bu^3/3 + cu^2/2$ and

$$H(U) = H(u, v) = \int_{\mathbb{R}^d} \{ |v(x)|^2 / 2 + |\nabla u(x)|^2 / 2 + F(u(x)) \} dx.$$

Assume that

(AS 0)
$$a > 0 \text{ and } b^2 \le \frac{9}{2}ac \text{ with } \kappa = \frac{a}{4} - \frac{b^2}{18c} \ge 0.$$

For $0 < \delta < 1$ and 0 < r, we define auxiliary function spaces as $\tilde{V} = \mathring{H}_{-r}^{1-\delta}$ $\cap L^{3}_{-r/3}$, $\tilde{V}^{*} = H_{r}^{-1+\delta} + L^{3/2}_{r/3}$, $\tilde{X} = {}^{\iota}(\tilde{V} \times H_{-r}^{-\delta})$ and $\tilde{X}^{*} = \tilde{V}^{*} \times \mathring{H}_{r}^{\delta}$. Defining a nonnegative functional $\Lambda(U) = ||u||_{1-\delta, -r} + |u|_{3, -r/3}^{3} + ||v||_{-\delta, -r}$ on \tilde{X} , we introduce the notion of test functionals as follows.

Definition 1. A real function $\Phi(\cdot, \cdot)$ defined on $[0, T_0) \times \tilde{X}$ is called a test functional if it satisfies the following:

(1) $\Phi(\cdot, \cdot)$ is continuous on $[0, T_0) \times \tilde{X}$ and verifies $\sup_{(t,U)} |\Phi_t(t, U)| / (1 + \Lambda(U)) < \infty$.

(2) $\Phi(\cdot, \cdot)$ is Fréchet \tilde{X} -differentiable in the direction X. Moreover, $\Phi_{U}(\cdot, \cdot)$ is continuous form $[0, T_{0}) \times X$ to \tilde{X}^{*} and is bounded, i.e. $\Phi_{u}(t, U) \in C_{b}(0, T_{0}; \tilde{V}^{*}), \Phi_{v}(t, U) \in C_{b}(0, T_{0}; \mathring{H}_{r}^{*}).$

(3) There exists $0 < T \le T_0$, $T < \infty$, depending on Φ such that $\Phi(t, U) = 0$ for any $t \ge T$ and $U \in \tilde{X}$. (In this case, Φ is said to have the compact support in t.)

Now, we introduce the notion of solutions.

Definition 2. A family of Borel measures $\{\mu(t, dU)\}_{0 < t < T_0}$ on X is called a strong solution of Problem (II) on $(0, T_0)$ if it satisfies the following conditions:

∫_x (1+Λ(U))µ(·, dU) ∈ L[∞](0, T₀).
 ∫_x Φ(U)µ(t, dU) is measurable in t for any non-negative, weakly

continuous functional $\Phi(\cdot)$ on X.

(3) For any test functional $\Phi(\cdot, \cdot)$, it satisfies (II).

Definition 3. A functional $W(t, \Xi)$ defined on $[0, T_0) \times X^*$ will be called a strong solution of problem (I) on $(0, T_0)$ if it satisfies:

(1) For each $Z \in \tilde{X}^*$, W(t, Z) belongs to $L^1[0, T_0)$ and continuous at t=0.

(2) $W(t, \mathcal{Z})$ is three times Fréchet X*-differentiable in the direction \tilde{X}^* for a.e.t. Moreover, $\delta^k W(t, \mathcal{Z})/\delta\xi(x)^k$ with $1 \le k \le 3$ and $\delta W(t, \mathcal{Z})/\delta\eta(x)$ exist as elements in $\mathcal{D}'(\mathbf{R}^d)$ for a.e.t.

(3) $W(t, \Xi)$ satisfies (I.1)-(I.4) as distributions in t for each $\Xi \in \tilde{X}_{\infty}^* \equiv \bigcup_{m=1}^{\infty} \prod_m \tilde{X}^*$ (see below).

Our results are

Theorem A. Put $E_*(U) = |v|_2^2/2 + \max(1/2, c/2 + |b|/6) ||u||_1^2 + (a/4 + |b|/6) ||u||_4^4$. Under Assumption (AS0), for any Borel probability measure $\mu_0(dU)$ on X satisfying

(AS1) $\int_{\mathcal{X}} (1+E_*(U))^{\alpha} \mu_0(dU) < \infty \quad for \begin{cases} \alpha = 1 & when \ \kappa > 0, \\ \alpha > 3/2 & when \ \kappa = 0, \ d \le 3 \end{cases}$ and any $q \in L^2(0, T_0; L^2) \cap L^{\infty}(0, T_0; V^*)$, there exists a solution $\{\mu(t, dU)\}_{0 \le t \le T_0}$

and any $g \in L^2(0, T_0; L^2) \cap L^{\infty}(0, T_0; V^*)$, there exists a solution $\{\mu(t, dU)\}_{0 < t < 2}$ of (II).

Theorem B. Assume that (AS0) holds. Let a positive definite functional $W_0(\Xi)$ on X^* be given which is three times Fréchet X^* -differentiable in the direction \tilde{X}^* having $\delta^k W_0(\Xi)/\delta\xi(x)^k$ with $1 \le k \le 3$ and $\delta W_0(\Xi)/\delta\eta(x)$ in $\mathcal{D}'(\mathbf{R}^d)$. Then, for any $g \in L^2(0, T_0; L^2) \cap L^{\infty}(0, T_0; V^*)$, there exists a strong solution $W(t, \Xi)$ of Problem (I).

Sketch of proofs. For (I) and (II), we may correspond the following nonlinear Klein-Gordon equation as characteristics.

(NLKG)
$$\Box u + cu + bu^2 + au^3 = g \quad \text{on } (x, t) \in \Omega \times (0, T_0),$$
$$u|_{x,0} = 0, \quad u|_{x,0} = u_0 \quad \text{and} \quad u_t|_{t=0} = v_0.$$

The meaning of the characteristic, the definition of functional derivatives and the terminology used here, are explained precisely in Inoue [3].

Let $\{w_j\}$ be a complete orthonormal basis in L^2 , dense in $\mathring{H}^1 \cap H^2$ such that (1) $w_j(x) \in L^2_r \cap \mathring{H}^1$, $\partial^{\alpha}_x w_j(x) \in L^2_r$ for $|\alpha| \le 2$ and (2) $(1+|x|^2)^{r/2} w_j(x) \in L^{\infty}$, $(1+|x|^2)^{r/2} \partial w_j(x) / \partial x^k \in L^{\infty}$ for some r > 0. We put $\pi_m u = \sum_{j=1}^m \langle u, w_j \rangle w_j$.

Let $u_m(t) \in C^2([0, T_0]; \pi_m V)$ be the Galerkin approximation of NLKG which satisfies

$$\frac{d}{dt}U_m(t) = \Pi_m L(U_m(t)) + \Pi_m G(t) \quad \text{with} \quad U_m(0) = \Pi_m U_0, \quad U_0 = {}^{\iota}(u_0, v_0)$$

where $\Pi_m U = {}^t(\pi_m u, \pi_m v), \ U_m(t) = {}^t(u_m(t), v_m(t)), \ L(U) = {}^t(v, \Delta u - f(u)), \ G(t) = {}^t(0, g(t)).$

Lemma 1. Assume (AS0). For any $\varepsilon > 0$, t > 0, we have

$$H(u_m(t), v_m(t)) \leq e^{\iota t} \Big[H(u_{0m}, v_{0m}) + rac{1}{2arepsilon} \int_0^t |g(s)|^2 ds \Big].$$

Moreover, putting $C_{t,\epsilon} = 1 + (2t^2 + \epsilon t)e^{t^2 + \epsilon t}$, we get

$$E_{s}(U_{m}(t)) \equiv \frac{1}{2} |\dot{u}_{m}(t)|_{2}^{2} + \frac{1}{2} ||u_{m}(t)||_{1}^{2} + \kappa |u_{m}(t)|_{4}^{4} \leq C_{t,s} \Big[E_{*}(U_{m}(0)) + \frac{1}{2\varepsilon} \int_{0}^{t} |g(s)|^{2} ds \Big].$$

Put $\Pi_m X = {}^t(\pi_m V \times \pi_m L^2)$, $X_{\infty} = \bigcup_{m=1}^{\infty} \Pi_m X$, $\Pi_m \tilde{X} = {}^t(\pi_m \tilde{V} \times \pi_m H^{-\delta})$, $\tilde{X}_{\infty} = \bigcup_{m=1}^{\infty} \Pi_m \tilde{X}$, and $\tilde{X}_{\infty}^* = \bigcup_{m=1}^{\infty} \Pi_m \tilde{X}^*$. We define an operator from $\Pi_m X$ to $C([0, T_0]; \Pi_m X)$ by $S_m(t)(\Pi_m U_0) = {}^t(u_m(t), \dot{u}_m(t))$ for $U_0 \in X$. For any measure μ_0 on X and $\omega \in \mathcal{B}(X)$, we define, $\mu_0^{(m)}(\omega) \equiv \mu_0(\Pi_m^{-1}(\omega \cap \Pi_m X))$, $\mu^{(m)}(t, \omega) \equiv \mu_0^{(m)}(S_m(t)^{-1}\omega)$. Clearly, $\mu_0^{(m)}(dU)$ and $\mu^{(m)}(t, dU)$ are concentrated on $\Pi_m X = \Pi_m \tilde{X}$.

Lemma 2. For any test functional Φ with compact support in t, we have

$$\begin{split} \int_0^{T_0} \int_x \frac{\partial \Phi(t, U)}{\partial t} \mu^{(m)}(t, dU) dt + \int_x \Phi(0, U) \mu_0^{(m)}(dU) \\ &= -\int_0^{T_0} \int_x \left[\langle \Delta u - f(u) + g(t), \Phi_v(t, U) \rangle + \langle v, \Phi_u(t, U) \rangle \right] \mu^{(m)}(t, dU) dt. \end{split}$$

Defining the Fourier-Stieltjes transform of $\mu^{(m)}(t, dU)$ and the operator $L(\delta/\delta \Xi)$ by

$$W^{(m)}(t, \mathcal{Z}) = \int_{\mathcal{X}} e^{i\langle \mathcal{Z}, U \rangle} \mu^{(m)}(t, dU) = \int_{\mathcal{X}} e^{i\langle \Pi_m \mathcal{Z}, U \rangle} \mu^{(m)}(t, dU)$$

and

$$L\left(\frac{\delta}{\delta\Xi}\right)W^{(m)}(s,\Xi) = \int_{X} e^{i\langle \Pi_{m\Xi}, U\rangle} \langle \Pi_{m}\Xi, L(U) \rangle \mu^{(m)}(s, dU),$$

we have

Lemma 3. Under Assumption (AS0), we have

$$\begin{split} \dot{W}^{\scriptscriptstyle(m)}(t,\mathcal{Z}) = & iL\left(\frac{\delta}{\delta\mathcal{Z}}\right) W^{\scriptscriptstyle(m)}(t,\mathcal{Z}) + i\langle\mathcal{Z}, G(t)\rangle W^{\scriptscriptstyle(m)}(t,\mathcal{Z}) \\ & for \ \mathcal{Z} \in \Pi_k \tilde{X}^*, k \leq m \end{split}$$

Moreover, we remark

Lemma 4. (1) X is compactly imbedded in \tilde{X} .

(2) There exists a constant C such that

$$1 + \Lambda(U) \leq C(1 + E_{\kappa}(U))^{\beta} \qquad where \begin{cases} \beta = 3/4 & \text{for } \kappa > 0, \\ \beta = 3/2 & \text{for } \kappa = 0, d \leq 3 \end{cases}$$

Proceeding as in Vishik and Komec [4], we get

Lemma 5. $W^{(m)}(t, \Xi)$ forms a equicontinuous and equibounded set on $C([0, T_0) \times Y^*)$ where $Y^* = L^2 \times V$.

From this, there exist $W(t, \Xi)$ and a subsequence $W^{(m')}(t, \Xi)$ such that $W^{(m')}(t, \Xi)$ converges uniformly to $W(t, \Xi)$. Using the Prokhorov theorem and modifying a little the arguments in [4], we have

Proposition. (1) For any t, there exists a measure $\mu(t, dU)$ such that $(1 + \Lambda(U))\mu^{(m')}(t, dU)$ converges weakly to $(1 + \Lambda(U))\mu(t, dU)$ on \tilde{X} . And this implies that $\mu^{(m')}(t, dU)$ itself converges weakly to $\mu(t, dU)$ on \tilde{X} .

(2) Any weak limit $\mu(t, dU)$ of measures $\mu^{(m')}(t, dU)$ has the Fourier-Stietjes transform $\hat{\mu}(t, \Xi) = W(t, \Xi)$ for $\Xi \in Y^*$, $t \in [0, T_0)$.

(3) For any $t \in [0, T_0)$, $\mu(t, \tilde{X} \setminus X) = 0$.

Lemma 6. For $\Xi \in \tilde{X}_{\infty}^*$, $\int_X e^{i\langle \mathfrak{S}, U \rangle} \langle \mathfrak{Z}, L(U) \rangle \mu^{(m')}(t, dU)$, the sequence of continuous functions of $t \in [0, T_0]$ is uniformly bounded, and for any t, it converges to $\int_X e^{i\langle \mathfrak{S}, U \rangle} \langle \mathfrak{Z}, L(U) \rangle \mu(t, dU)$ as $m' \to \infty$.

Combining these with the arguments in Foiaş [1], we get Theorem A. On the other hand, by the conditions for $W_0(\Xi)$, we may suppose that there exists a measure $\mu_0(dU)$ on X satisfying $\hat{\mu}_0(\Xi) = W_0(\Xi)$ and (AS1). Remarking the facts explained in Foiaş [2] and Inoue [3], we may prove Theorem B.

Remark. Detailed proofs with other topics will be published elsewhere in the near future.

References

- C. Foias: Statistical study of Navier-Stokes equations. I. Rend. Sem. Mat. Padova, 48, 219-349 (1973).
- [2] ——: ditto. II. ibid., 49, 9–123 (1973).
- [3] A. Inoue: Strong and classical solutions of the Hopf equation. An example of functional derivative equation of second order. Tôhoku Math. J., 39, 115-144 (1987).
- [4] M. I. Vishik and A. I. Komech: On the solvability of the Cauchy problem for the Hopf equation corresponding to a nonlinear hyperbolic equation. Amer. Math. Soc. Transl., (2) 118, 161-184 (1982).