11. A Certain Functional Derivative Equation Corresponding to $\square \boldsymbol{u}+\boldsymbol{c} \boldsymbol{u}+\boldsymbol{b} \boldsymbol{u}^{2}+\boldsymbol{a} \boldsymbol{u}^{3}=\boldsymbol{g}$ on \mathbf{R}^{d+1}

By Atsushi Inoue

Department of Mathematics, Tokyo Institute of Technology (Communicated by Kôsaku Yosida, M. J. A., Feb. 13, 1989)

Introduction and results. $L_{r}^{p}(1 \leq p \leq \infty, r \in \boldsymbol{R})$ denotes the space of weighted p-summable functions on \boldsymbol{R}^{d} with norm given by $|u|_{p, r}=$ $\left(\int_{\boldsymbol{R}^{d}}\left(1+|x|^{2}\right)^{r p / 2}|u(x)|^{p} d x\right)^{1 / p}$ or $|u|_{\infty, r}=$ ess. $\sup _{x \in \boldsymbol{R}^{d}}\left(1+|x|^{2}\right)^{r / 2}|u(x)|$. When $r=0$, we put $L^{p}=L_{0}^{p}$ with $|u|_{p}=|u|_{p, 0}$. For $s \in N,\|u\|_{s, r}=\left(\int_{R^{d}}\left(1+|x|^{2}\right)^{r}\right.$ $\left.\sum_{|\alpha| \leq s}\left|D^{\alpha} u(x)\right|^{2} d x\right)^{1 / 2}$ represents the norm of H_{r}^{s}, the weighted Sobolev space of order s on \boldsymbol{R}^{d}. For general $s \in \boldsymbol{R}, H_{r}^{s}$ is defined by using the interpolation theory and H^{s} stands for H_{0}^{s} with $\|u\|_{s}=\|u\|_{s, 0}$. The dual space of L_{r}^{p} is L_{-r}^{q} for $1 \leq p<\infty$ with $1 / p+1 / q=1 . \quad H_{-r}^{-s}=\left(\dot{H}_{r}^{s}\right)^{*}$ for $s \geq 0$ with $\dot{H}_{r}^{s}=$ $\dot{H}_{r}^{s}\left(\boldsymbol{R}^{d}\right)(s \geq 0)$ being the closure of $C_{0}^{\infty}\left(\boldsymbol{R}^{d}\right)$ in H_{r}^{s}.

Now, we put $X={ }^{t}\left(V \times L^{2}\right)$ and $X^{*}=V^{*} \times L^{2}$ with norms $\|U\|_{X}=\|u\|_{V}+$ $|v|_{2}$ and $\|E\|_{X^{*}}=\|\xi\|_{V^{*}}+|\eta|_{2}$ for $U=^{t}(u, v)$ and $E=(\xi, \eta)$. Here, $V=H^{1} \cap L^{4}$ and $V^{*}=H^{-1}+L^{4 / 3}$ with norms $\|u\|_{V}=\|u\|_{1}+|u|_{4}$ and $\|\xi\|_{V^{*}}=\inf _{\xi=\xi_{1}+\xi_{2}}\left(\left\|\xi_{1}\right\|_{-1}+\right.$ $\left.\left|\xi_{2}\right|_{\mid / 3}\right)$.

Our aim of this paper is to solve the following problems: Let $0<T_{0}$ $\leq \infty$.
(I) Find a functional $W(t, \Xi)$ on $t \in\left(0, T_{0}\right) \times X^{*}$ satisfying

$$
\begin{gather*}
\frac{\partial}{\partial t} W(t, \Xi)=\int_{R^{d}}\left[\eta(x)\left((\Delta-c) \frac{\delta W(t, \Xi)}{\delta \xi(x)}+i b \frac{\delta^{2} W(t, \Xi)}{\delta \xi(x)^{2}}+a \frac{\delta^{3} W(t, \Xi)}{\delta \xi(x)^{3}}\right)\right. \tag{I.1}\\
\left.+\xi(x) \frac{\delta W(t, \Xi)}{\delta \eta(x)}+i \eta(x) g(x, t) W(t, \Xi)\right] d x, \\
\\
W(t, 0)=1, \quad W(0, \Xi)=W_{0}(\Xi) .
\end{gather*}
$$

(I.2)

Here given data are $W_{0}(\Xi)$ and $g(x, t)$.
(II) Find a family of Borel measures $\{\mu(t, d U)\}_{0<t<T_{0}}$ on X satisfying

$$
\begin{align*}
\int_{0}^{T_{0}} \int_{X} & \frac{\partial \Phi(t, U)}{\partial t} \mu(t, d U) d t+\int_{X} \Phi(0, U) \mu_{0}(d U) \tag{II}\\
= & -\int_{0}^{T_{0}} \int_{X} \int_{R^{d}}\left[(\Delta u(x)-f(u(x))+g(x, t)) \frac{\delta \Phi(t, U)}{\delta v(x)}+v(x) \frac{\delta \Phi(t, U)}{\delta u(x)}\right] \\
& \times d x \mu(t, d U) d t
\end{align*}
$$

for suitable 'test functionals' $\Phi(t, U)$ with given data $\mu_{0}(d U)$ and $g(x, t)$.
For the notational simplicity, we put here $f(u)=a u^{3}+b u^{2}+c u, F(u)=$ $a u^{4} / 4+b u^{3} / 3+c u^{2} / 2$ and

$$
H(U)=H(u, v)=\int_{R^{d}}\left\{|v(x)|^{2} / 2+|\nabla u(x)|^{2} / 2+F(u(x))\right\} d x .
$$

Assume that
(AS 0)

$$
a>0 \quad \text { and } \quad b^{2} \leq \frac{9}{2} a c \quad \text { with } \quad \kappa=\frac{a}{4}-\frac{b^{2}}{18 c} \geq 0 .
$$

For $0<\delta<1$ and $0<r$, we define auxiliary function spaces as $\tilde{V}=\dot{H}_{-r}^{1-\delta}$ $\cap L_{-r / 3}^{3}, \quad \tilde{V}^{*}=H_{r}^{-1+\delta}+L_{r / 3}^{3 / 2}, \tilde{X}={ }^{t}\left(\tilde{V} \times H_{-r}^{-\delta}\right)$ and $\tilde{X}^{*}=\tilde{V}^{*} \times \stackrel{\circ}{r}_{r}^{\dot{\delta}}$. Defining a nonnegative functional $\Lambda(U)=\|u\|_{1-\delta,-r}+|u|_{j_{3}, r / 3}^{3}+\|v\|_{-\delta,-r}$ on \tilde{X}, we introduce the notion of test functionals as follows.

Definition 1. A real function $\Phi(\cdot, \cdot)$ defined on $\left[0, T_{0}\right) \times \tilde{X}$ is called a test functional if it satisfies the following:
(1) $\Phi(\cdot, \cdot)$ is continuous on $\left[0, T_{0}\right) \times \tilde{X}$ and verifies $\sup _{(t, U)}\left|\Phi_{t}(t, U)\right| /$ $(1+\Lambda(U))<\infty$.
(2) $\Phi(\cdot, \cdot)$ is Fréchet \tilde{X}-differentiable in the direction X. Moreover, $\Phi_{U}(\cdot, \cdot)$ is continuous form $\left[0, T_{0}\right) \times X$ to \tilde{X}^{*} and is bounded, i.e. $\Phi_{u}(t, U) \in$ $C_{b}\left(0, T_{0} ; \tilde{V}^{*}\right), \Phi_{v}(t, U) \in C_{b}\left(0, T_{0} ; \dot{H}_{r}^{o}\right)$.
(3) There exists $0<T \leq T_{0}, T<\infty$, depending on Φ such that $\Phi(t, U)=0$ for any $t \geq T$ and $U \in \tilde{X}$. (In this case, Φ is said to have the compact support in t.)

Now, we introduce the notion of solutions.
Definition 2. A family of Borel measures $\{\mu(t, d U)\}_{0<t<T_{0}}$ on X is called a strong solution of Problem (II) on ($0, T_{0}$) if it satisfies the following conditions:
(1) $\int_{X}(1+\Lambda(U)) \mu(\cdot, d U) \in L^{\infty}\left(0, T_{0}\right)$.
(2) $\int_{X} \Phi(U) \mu(t, d U)$ is measurable in t for any non-negative, weakly continuous functional $\Phi(\cdot)$ on X.
(3) For any test functional $\Phi(\cdot, \cdot)$, it satisfies (II).

Definition 3. A functional $W(t, \Xi)$ defined on $\left[0, T_{0}\right) \times X^{*}$ will be called a strong solution of problem (I) on ($0, T_{0}$) if it satisfies:
(1) For each $\Xi \in \tilde{X}^{*}, W(t, \Xi)$ belongs to $L^{1}\left[0, T_{0}\right)$ and continuous at $t=0$.
(2) $W(t, \boldsymbol{\Xi})$ is three times Fréchet X^{*}-differentiable in the direction \tilde{X}^{*} for a.e.t. Moreover, $\delta^{k} W(t, \Xi) / \delta \xi(x)^{k}$ with $1 \leq k \leq 3$ and $\delta W(t, \Xi) / \delta \eta(x)$ exist as elements in $\mathscr{D}^{\prime}\left(\boldsymbol{R}^{d}\right)$ for a.e.t.
(3) $W(t, \Xi)$ satisfies (I.1)-(I.4) as distributions in t for each $\Xi \in \tilde{X}_{\infty}^{*} \equiv$ $\bigcup_{m=1}^{\infty} \Pi_{m} \tilde{X}^{*}$ (see below).

Our results are
Theorem A. Put $E_{*}(U)=|v|_{2}^{2} / 2+\max (1 / 2, c / 2+|b| / 6)\|u\|_{1}^{2}+(a / 4+|b| /$ 6) $|u|_{4}^{4}$. Under Assumption (AS 0), for any Borel probability measure $\mu_{0}(d U)$ on X satisfying

$$
\int_{x}\left(1+E_{*}(U)\right)^{\alpha} \mu_{0}(d U)<\infty \quad \text { for } \begin{cases}\alpha=1 & \text { when } \kappa>0 \tag{AS1}\\ \alpha>3 / 2 & \text { when } \kappa=0, d \leq 3\end{cases}
$$

and any $g \in L^{2}\left(0, T_{0} ; L^{2}\right) \cap L^{\infty}\left(0, T_{0} ; V^{*}\right)$, there exists a solution $\{\mu(t, d U)\}_{0<t<T_{0}}$ of (II).

Theorem B. Assume that (AS0) holds. Let a positive definite functional $W_{0}(\Xi)$ on X^{*} be given which is three times Fréchet X^{*}-differentiable in the direction \tilde{X}^{*} having $\delta^{k} W_{0}(\boldsymbol{\Xi}) / \delta \xi(x)^{k}$ with $1 \leq k \leq 3$ and $\delta W_{0}(\boldsymbol{\Xi}) / \delta \eta(x)$ in $\mathscr{D}^{\prime}\left(\boldsymbol{R}^{d}\right)$. Then, for any $g \in L^{2}\left(0, T_{0} ; L^{2}\right) \cap L^{\infty}\left(0, T_{0} ; V^{*}\right)$, there exists a strong solution $W(t, \boldsymbol{\Xi})$ of Problem (I).

Sketch of proofs. For (I) and (II), we may correspond the following nonlinear Klein-Gordon equation as characteristics.
(NLKG) $\quad \square u+c u+b u^{2}+a u^{3}=g \quad$ on $(x, t) \in \Omega \times\left(0, T_{0}\right)$,

$$
\left.u\right|_{\partial \Omega}=0,\left.\quad u\right|_{t=0}=u_{0} \quad \text { and }\left.\quad u_{t}\right|_{t=0}=v_{0} .
$$

The meaning of the characteristic, the definition of functional derivatives and the terminology used here, are explained precisely in Inoue [3].

Let $\left\{w_{j}\right\}$ be a complete orthonormal basis in L^{2}, dense in $\dot{H}^{1} \cap H^{2}$ such that (1) $w_{j}(x) \in L_{r}^{2} \cap \dot{H}^{1}, \partial_{x}^{\alpha} w_{j}(x) \in L_{r}^{2}$ for $|\alpha| \leq 2$ and (2) $\left(1+|x|^{2}\right)^{r / 2} w_{j}(x) \in L^{\infty}$, $\left(1+|x|^{2}\right)^{r / 2} \partial w_{j}(x) / \partial x^{k} \in L^{\infty}$ for some $r>0$. We put $\pi_{m} u=\sum_{j=1}^{m}\left\langle u, w_{j}\right\rangle w_{j}$.

Let $u_{m}(t) \in C^{2}\left(\left[0, T_{0}\right) ; \pi_{m} V\right)$ be the Galerkin approximation of NLKG which satisfies

$$
\frac{d}{d t} U_{m}(t)=\Pi_{m} L\left(U_{m}(t)\right)+\Pi_{m} G(t) \quad \text { with } \quad U_{m}(0)=\Pi_{m} U_{0}, \quad U_{0}={ }^{t}\left(u_{0}, v_{0}\right)
$$

where $\Pi_{m} U={ }^{t}\left(\pi_{m} u, \pi_{m} v\right), U_{m}(t)={ }^{t}\left(u_{m}(t), v_{m}(t)\right), L(U)={ }^{t}(v, \Delta u-f(u)), \quad G(t)=$ ${ }^{t}(0, g(t))$.

Lemma 1. Assume (AS 0). For any $\varepsilon>0, t>0$, we have

$$
H\left(u_{m}(t), v_{m}(t)\right) \leq e^{t t}\left[H\left(u_{0 m}, v_{0 m}\right)+\frac{1}{2 \varepsilon} \int_{0}^{t}|g(s)|^{2} d s\right]
$$

Moreover, putting $C_{t, \varepsilon}=1+\left(2 t^{2}+\varepsilon t\right) e^{t_{2}+\varepsilon t}$, we get
$E_{\kappa}\left(U_{m}(t)\right) \equiv \frac{1}{2}\left|\dot{u}_{m}(t)\right|_{2}^{2}+\frac{1}{2}\left\|u_{m}(t)\right\|_{1}^{2}+\kappa\left|u_{m}(t)\right|_{4}^{4} \leq C_{t, \varepsilon}\left[E_{*}\left(U_{m}(0)\right)+\frac{1}{2 \varepsilon} \int_{0}^{t}|g(s)|^{2} d s\right]$.
Put $\Pi_{m} X==^{t}\left(\pi_{m} V \times \pi_{m} L^{2}\right), \quad X_{\infty}=\cup_{m=1}^{\infty} \Pi_{m} X, \quad \Pi_{m} \tilde{X}={ }^{t}\left(\pi_{m} \tilde{V} \times \pi_{m} H^{-\delta}\right), \quad \tilde{X}_{\infty}=$ $\cup_{m=1}^{\infty} \Pi_{m} \tilde{X}$, and $\tilde{X}_{\infty}^{*}=\cup_{m=1}^{\infty} \Pi_{m} \tilde{X}^{*}$. We define an operator from $\Pi_{m} X$ to $C\left(\left[0, T_{0}\right) ; \Pi_{m} X\right)$ by $S_{m}(t)\left(\Pi_{m} U_{0}\right)==^{t}\left(u_{m}(t), \dot{u}_{m}(t)\right)$ for $U_{0} \in X$. For any measure μ_{0} on X and $\omega \in \mathscr{B}(X)$, we define, $\mu_{0}^{(m)}(\omega) \equiv \mu_{0}\left(\Pi_{m}^{-1}\left(\omega \cap \Pi_{m} X\right)\right)$, $\mu^{(m)}(t, \omega) \equiv$ $\mu_{0}^{(m)}\left(S_{m}(t)^{-1} \omega\right)$. Clearly, $\mu_{0}^{(m)}(d U)$ and $\mu^{(m)}(t, d U)$ are concentrated on $\Pi_{m} X=$ $\Pi_{m} \tilde{X}$.

Lemma 2. For any test functional Φ with compact support in t, we have

$$
\begin{aligned}
& \int_{0}^{T_{0}} \int_{X} \frac{\partial \Phi(t, U)}{\partial t} \mu^{(m)}(t, d U) d t+\int_{X} \Phi(0, U) \mu_{0}^{(m)}(d U) \\
& \quad=-\int_{0}^{T_{0}} \int_{X}\left[\left\langle\Delta u-f(u)+g(t), \Phi_{v}(t, U)\right\rangle+\left\langle v, \Phi_{u}(t, U)\right\rangle\right] \mu^{(m)}(t, d U) d t
\end{aligned}
$$

Defining the Fourier-Stieltjes transform of $\mu^{(m)}(t, d U)$ and the operator $L(\delta / \delta \Xi)$ by

$$
W^{(m)}(t, \Xi)=\int_{X} e^{i\langle\varepsilon, U\rangle} \mu^{(m)}(t, d U)=\int_{X} e^{i\left\langle\Pi_{m} \varepsilon, U\right\rangle} \mu^{(m)}(t, d U)
$$

and

$$
L\left(\frac{\delta}{\delta \Xi}\right) W^{(m)}(s, \Xi)=\int_{X} e^{i\left\langle\Pi_{m} \xi, U\right\rangle}\left\langle\Pi_{m} \Xi, L(U)\right\rangle \mu^{(m)}(s, d U),
$$

we have

Lemma 3. Under Assumption (AS 0), we have

$$
\begin{gathered}
\dot{W}^{(m)}(t, \Xi)=i L\left(\frac{\delta}{\delta \Xi}\right) W^{(m)}(t, \Xi)+i\langle\Xi, G(t)\rangle W^{(m)}(t, \Xi) \\
\text { for } \Xi \in \Pi_{k} \tilde{X}^{*}, k \leq m
\end{gathered}
$$

Moreover, we remark
Lemma 4. (1) X is compactly imbedded in \tilde{X}.
(2) There exists a constant C such that

$$
1+\Lambda(U) \leq C\left(1+E_{\kappa}(U)\right)^{\beta} \quad \text { where } \begin{cases}\beta=3 / 4 & \text { for } \kappa>0 \\ \beta=3 / 2 & \text { for } \kappa=0, d \leq 3 .\end{cases}
$$

Proceeding as in Vishik and Komec [4], we get
Lemma 5. $W^{(m)}(t, \boldsymbol{E})$ forms a equicontinuous and equibounded set on $C\left(\left[0, T_{0}\right) \times Y^{*}\right)$ where $Y^{*}=L^{2} \times V$.

From this, there exist $W(t, \Xi)$ and a subsequence $W^{\left(m^{\prime}\right)}(t, \Xi)$ such that $W^{\left(m^{\prime}\right)}(t, \boldsymbol{E})$ converges uniformly to $W(t, \boldsymbol{\Xi})$. Using the Prokhorov theorem and modifying a little the arguments in [4], we have

Proposition. (1) For any t, there exists a measure $\mu(t, d U)$ such that $(1+\Lambda(U)) \mu^{\left(m^{\prime}\right)}(t, d U)$ converges weakly to $(1+\Lambda(U)) \mu(t, d U)$ on \tilde{X}. And this implies that $\mu^{\left(m^{\prime}\right)}(t, d U)$ itself converges weakly to $\mu(t, d U)$ on \tilde{X}.
(2) Any weak limit $\mu(t, d U)$ of measures $\mu^{\left(m^{\prime}\right)}(t, d U)$ has the FourierStietjes transform $\hat{\mu}(t, \boldsymbol{\Xi})=W(t, \boldsymbol{\Xi})$ for $\Xi \in Y^{*}, t \in\left[0, T_{0}\right)$.
(3) For any $t \in\left[0, T_{0}\right), \mu(t, \tilde{X} \backslash X)=0$.

Lemma 6. For $\Xi \in \tilde{X}_{\infty}^{*}, \int_{X} e^{i\langle\Sigma, U\rangle}\langle\Xi, L(U)\rangle \mu^{\left(m^{\prime}\right)}(t, d U)$, the sequence of continuous functions of $t \in\left[0, T_{0}\right]$ is uniformly bounded, and for any t, it converges to $\int_{X} e^{i\langle\Sigma, U\rangle}\langle\Xi, L(U)\rangle \mu(t, d U)$ as $m^{\prime} \rightarrow \infty$.

Combining these with the arguments in Foiaş [1], we get Theorem A. On the other hand, by the conditions for $W_{0}(\Xi)$, we may suppose that there exists a measure $\mu_{0}(d U)$ on X satisfying $\hat{\mu}_{0}(\Xi)=W_{0}(\Xi)$ and (AS 1). Remarking the facts explained in Foiaş [2] and Inoue [3], we may prove Theorem B.

Remark. Detailed proofs with other topics will be published elsewhere in the near future.

References

[1] C. Foias: Statistical study of Navier-Stokes equations. I. Rend. Sem. Mat. Padova, 48, 219-349 (1973).
[2] -: ditto. II. ibid., 49, 9-123 (1973).
[3] A. Inoue: Strong and classical solutions of the Hopf equation. An example of functional derivative equation of second order. Tôhoku Math. J., 39, 115-144 (1987).
[4] M. I. Vishik and A. I. Komech: On the solvability of the Cauchy problem for the Hopf equation corresponding to a nonlinear hyperbolic equation. Amer. Math. Soc. Transl., (2) 118, 161-184 (1982).

