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1. Introduction. Let (S, , [) and (T, ’r, ,) be measure spaces and
assume that a trio of functions u:STR--.R, g:STR-, and
o:T-R is given. Consider the well-known Arkin-Levin variational
problem formulated as follows:

Maximize u(s, t, x(s, t))d(/(R))
JST

(P) subject to

g(s, t))dz<=o(t) a.e.t, X(8,
s

The existence of optimal solutions or (P) has been investigated by
Arkin-Levin [1] and Maruyama [5], [6], where a special kind o infinite
dimensional Ljapunov measure played a crucial role. In this paper, we
shall present a more classical alternative approach to the existence
problem, based upon the Continuity Theorem or nonlinear integral
unctionals due to Ioffe [3] and the Compactness Theorem stated and
proved in the next section.

2. Compactness Theorem.
Theorem 1 (Compactness Theorem). Let (S, , [) and (T, g’r, ,) be

finite measure spaces and f :STR- be (’s(R)’r(R),(/))-
measurable, where _(.) stands for the Borel a-field on (.). We denote
by f*(s, t,-) the Young-Fenchel transform of xf(s, t, x) for any fixed
(s, t) e S T; i.e. f*(s, t, y)-SUpx(<y, x>-- f(s, t, x)), y e R. If f satisfies
the growth condition"

sr If*(s, t, y)Id(/,)=RDom

[ If*(s, t, y)[d(g(,) oo or all y e R,i.e.
JST

then the set

is weakly relatively compact in L(S T,R) for any c e L(T, R).
We need a lemma due to Ioffe-Tihomirov [4] (p. 358-359).
Lemma. Let (T,C,) be a measure space and f TR-- be a

measurable function which satisfies the growth condition"

[ If*(t,y)ld=R; i.e. If*(t,y)ldoo or all yeDcm R
dT JT
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And define the function r T--(M>=O) by
r.(t) sup f*(t, y).

Then the function Oc R/-- (for fixed c e R) defined by

lcl+ EIr,(t)ld Ee,(E)r

satisfies the following four conditions:
(i) 0c(r)>0, for all r e R
(ii) is nondecreasing,
(iii) t(0) 0, and
(iv) 0(r)0 as r-0.

Proof of the Compactness Theorem. We shall show the uniform
integrability o Fc through a reasoning analogous to Ioffe-Tihomirov [4]
(p. 360-361). By the growth condition of f, we must have

S dS

I we define the unction cl :T-R by

c(t)-c(t)+lf*(s, t, 0) d/,
then Cl e L(T,R) because of the growth condition.

It can easily be verified that

(2) f(s, t, x(s, t))d,a=c(t) or a.e. t
J

or any E e ’(R)’r and any x F, where Et is the section of E at t.
The inequality (2) comes rom a simple calculation as ollows:

c(t) f x t))d[
JEt JS\Et

dEt JS\Et

Et S

Integrating the both sides o (3) with respect to t, we obtain

f(s, t, X(8
E

Define L,:ST-I and 8:R/-+ by
r(s, t)= sup f*(s, t, y)

Then 0 satisfies (i)-(iv) in the above lemma.
For any x e F and any y e L(S T, R), we obtain, by the Young-

Fenchel inequality, that

(x(s, t), y(s, t)}d[= f(s, t, x(s, t))d[/ f*(s, t, y(s, t))d[
(4) Et t Et

=c(t)/| f*(s, t, y(s, t))d[ (by (2)) or a.e. t.
J

Hence the ollowing estimates hold good or any M0:
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M x (s, t) d(p(R),) =sup IfE (x(s’ t)’ y(s’ t)}d(/(R)’)

L(S T, R),Y
(by Hahn-Banach theorem)

sup{ c "+ f*(s, , Y (s, t))d()

y e L(S T, R), y] M (by (4))

[c[+[_ [r(s, t) d(z,).
That is,

I ’x(s’
>0

r(s, t)d()}O((.)(E)).

Hence, taking account o the properties o shown in the lemma, we
can conclude that F is uniformly integrable. Q.E.D.. xistence Theorem. We shall now go over to the existence
theorem or the problem (P).

Assumption 1. (S, , ) and (T, r, ,) are non-atomic, complete finite
measure spaces.

Assumption 2. u satisfies the ollowing conditions.
(1) u is (Cr(R), (R))-measurable.
(2) The unction xu(s, t, x) is upper semi-continuous and concave

or any fixed (s, t) e S T.
( 3 ) There exist some a e L(S T, R) and b e L(S T, R) such that

u(s, t, x)g (a(s, t), x}+ b (s,
or M1 (s, t, x) e S T R.

( 4 )
JST

or all x e L(S
Assumption 3. g:=(g(), g(), ., g()) satisfies the following conditions.
( 1 ) g( is ( r(R), ())-measurable.
(2) The unction xg()(s, t, x) is lower semi-continuous and convex

for any fixed (s, t) e S T.
( 3 ) There exist some c e L(S T, R) and d e L(S T, R) such that

g()(s, t, x) (c(s, t), x}+ d(s, t).
or all (s, t, x) e S T R.

( 4 g() satisfies the growth condition:

Dom [ g()*(s, t, y)d(,)=R,
JST

where g()*(s, t, .) is the Young-Fenchel transform o xg()(s, t,x) or
each fixed (s, t) e S T.

Assumption 4. e L(T, R).
Theorem 2. Under Assumptions 1-4, our problem (P) has an optimal

solution in L(S T, R).
Proof. According to Ioffe’s Ccntin:ity Theorem (Icffe [3]), As-
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sumptions 1-2 imply that the integral functional

J x--> [ u(s, t, x(s, t))d(/(R),)
JST

is sequentially upper semi-continuous on L(S T, R) with respect to the
weak topology.

And Assumption 3 assures, by Theorem 1, that the set

is weakly relatively compact in L(ST,R). Hence F is L-bounded.
Thus we obtain, by Assumption 2-(3), that

--oo?’_supJ(x)< ale.sup x+bll--C,
xF xF

(-- Y comes rom Assumption 2-(4)).
Let (x} be a sequence in F such that

lira J (x) y.

Since F is weakly relatively compact, (x} has a weakly convergent
subsequence. Without loss o generality, we may assume that

w-lira x=x* e L(S T, R).

We can easily verity that x* e F as ollows. Again by the Continuity

Theorem, Assumptions 1 and 3 imply that the integral unctional

I x g()(s, , x(s, t))dz
JS

is sequentially lower semi-continuous on L(S T, R) with respect to the
weak topology for any fixed t e T. Hence

[ g()(s, t, x*(s, t))dzlim inf [ g()(s, t, x(s, t))dz(t),
S dS

rom which we can conclude that x*e F.
Finally, by the sequential upper semi-continuity of J, we must have

J(x*)lim sup J(x)--y.

On the other hand, it is obvious that yJ(x*). Hence J(x*)=7", which
means that x* is an optimal solution or (P). Q.E.D.
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