44. On the Inverse Scattering on the Line and the Darboux Transformation

By Mayumi Ohmiya
Department of Mathematics, College of General Education, Tokushima University
(Communicated by Kôsaku Yosida, M. J. A., June 13, 1989)

In this paper we study the inverse scattering problem for the 1-dimensional Schrödinger operator

$$
H(u)=-\frac{d^{2}}{d x^{2}}+u(x), \quad-\infty<x<\infty
$$

by the method of the Darboux transformation. Here we assume that the potential $u(x)$ belongs to

$$
L_{1,2}=\left\{u \mid \text { real valued, continuous and } \int_{-\infty}^{\infty}|x|^{2}|u(x)| d x<\infty\right\}
$$

for some $\lambda \geqq 0$. In this article, we omitted the proof. See [3] and [4] for details.

1. Jost solutions. Let $f_{ \pm}(x, \xi ; u)$ be the solutions of the eigenvalue problem

$$
H(u) f_{ \pm}=-f_{ \pm}^{\prime \prime}+u(x) f_{ \pm}=\xi^{2} f_{ \pm}
$$

such that $f_{ \pm}(x, \xi ; u)$ behave like $e^{ \pm i \xi x}$ as $x \rightarrow \pm \infty$ respectively, which are called the Jost solutions, if they exist. If $u(x) \in L_{1,0}$, then $f_{ \pm}(x, \xi ; u)$ exist for $\xi \in \boldsymbol{R} \backslash\{0\}$. Moreover, if $u(x) \in L_{1,1}$, then $f_{ \pm}(x, \xi ; u)$ extended analytically into the complex upper half plane $\operatorname{Im} \xi>0$. More precisely, $e^{\mp i \xi x} f_{ \pm}(x, \xi ; u)$ -1 belong to the Hardy space H^{2+} of the upper half plane and, therefore, they admit the integral representation

$$
\begin{equation*}
e^{\mp i \xi x} f_{ \pm}(x, \xi ; u)=1 \pm \int_{0}^{ \pm \infty} B_{ \pm}(x, y) e^{ \pm i \xi y} d y . \tag{1}
\end{equation*}
$$

In particular, $f_{ \pm}(x, 0 ; u)$ are defined. The entries of the S-matrix of $H(u)$ are represented explicitly in terms of the Jost solutions. For example, we have

$$
r_{ \pm}(\xi ; u)=\frac{\left[f_{+}(x, \mp \xi ; u), f_{-}(x, \pm \xi ; u)\right]}{\left[f_{-}(x, \xi ; u), f_{+}(x, \xi ; u)\right]}
$$

where $r_{+}(\xi ; u)$ and $r_{-}(\xi ; u)$ are the right and left reflection coefficients respectively, and $[f, g]=f g^{\prime}-g f^{\prime}$ is the Wronskian. We refer to [1] for explicit representations of another entries and further information about the scattering data.
2. Levinson's theorem. The following, which is called Levinson's theorem usually, is well known.

Theorem 1 (cf. [1; p. 208]). A potential $u(x)$ in $L_{1,1}$ without bound states is determined by its right reflection coefficient.

On the other hand, it is shown in [3] that such uniqueness is not valid for the potential $u(x)$ in $L_{1,0}$. More precisely, we have the following.

Theorem 2 (cf. [3; p. 25]). There exist $u(x)$ and $v(x)$ in $L_{1,0} \backslash L_{1,1}$ such that $u(x) \neq v(x), H(u)$ and $H(v)$ have no bound states, and their right reflection coefficients coincide with each other.

We can prove Theorem 2 by constructing such potentials by the method of the Darboux transformation. Here we explain the Darboux transformation. Let $P(u)$ be the set of all positive solutions of the differential equation
(2) $\quad H(u) f=-f^{\prime \prime}+u(x) f=0$
and suppose $f(x) \in P(u) \neq \varnothing$. Put $A_{f}=d / d x+f^{\prime} / f$ then $H(u)=A_{f} A_{f}^{*}$ follows, where A_{f}^{*} is the formal adjoint of A_{f}. We define the Darboux transformation $H^{*}(u ; f)$ by $H^{*}(u ; f)=A_{f}^{*} A_{f}$. Put

$$
u^{*}=u^{*}(x ; f)=u(x)-2(\log f(x))^{\prime \prime}
$$

then $H^{*}(u ; f)=H\left(u^{*}\right)$ follows.
3. Positive solutions. In this section we discuss whether the equation (2) has positive solutions or not. Define $S_{ \pm}(u)$ by

$$
S_{ \pm}(u)=\left\{f \mid \text { solutions of }(2), \text { and } \exists \lim _{x \rightarrow \pm \infty} f(x) \in(0, \infty)\right\}
$$

respectively. In [1], Deift and Trubowitz showed that if $u(x)$ is in $L_{1,2}$, and $H(u)$ has no bound states, then $f_{ \pm}(x, 0 ; u)$ belong to $P(u)$. On the other hand, we have

Theorem 3 (cf. [4; Theorem 2]). If $u(x)$ is in $L_{1,0}$, and $H(u)$ has no bound states, then $S_{ \pm}(u) \subset P(u)$ follows.

Theorem of Deift-Trubowitz mentioned above can be obtained as a corollary of Theorem 3. Put $S(u)=S_{+}(u) \cup S_{-}(u)$, then we have

Theorem 4 (cf. [4]). Suppose that $u(x) \in L_{1,0}, H(u)$ has no bound states and $S(u) \neq \varnothing$. Put $u^{*}=u^{*}(x ; f)$ for $f(x) \in S(u)$. Then the Jost solutions $f_{ \pm}\left(x, \xi ; u^{*}\right)$ exist for all $\xi \in \boldsymbol{R} \backslash\{0\}$. Moreover,

$$
r_{ \pm}\left(\xi ; u^{*}\right)=-r_{ \pm}(\xi ; u)
$$

are valid.
Here we prove Theorem 2. Suppose that $w(x)$ is in $L_{1,2}$, and $r_{ \pm}(0 ; w)$ $=-1$ (this holds if and only if $f_{ \pm}(x, 0 ; w)$ are linearly independent). Moreover assume that $H(w)$ has no bound states. Put

$$
\text { (} 3 \text {) }
$$

$$
u(x)=w(x)-2\left(\log f_{+}(x, 0 ; w)\right)^{\prime \prime}
$$

and
(4) $\quad v(x)=w(x)-2\left(\log f_{-}(x, 0 ; w)\right)^{\prime \prime}$.

Then, it follows that $u(x) \neq v(x), u(x)$ and $v(x)$ are in $L_{1,0} \backslash L_{1,1}, r_{ \pm}(\xi ; u)=$ $r_{ \pm}(\xi ; v)=-r_{ \pm}(\xi ; w)$, and $H(u)$ and $H(v)$ have no bound states.
4. Inverse problem. Suppose that the function $r(\xi)(\xi \in \boldsymbol{R})$ is continuous, $|r(\xi)|<1$ for all $\xi \in \boldsymbol{R} \backslash\{0\}, r(\xi)=O(1 / \xi)$ as ξ tends to $\pm \infty, r(0)=1$, $\overline{r(\xi)}=r(-\xi)$, the Fourier transform $\tilde{r}(x)$ of $r(\xi)$ is absolutely continuous, and

$$
\int_{\alpha}^{\infty}\left(1+x^{2}\right)\left|\frac{d}{d x} \tilde{r}(x)\right| d x<\infty \quad \text { for all } \alpha
$$

Then, by the inverse scattering theory for potentials in $L_{1,2}$ (cf. [2]) it turns out there exists uniquely the potential $w(x)$ in $L_{1,2}$ such that $r_{+}(\xi ; w)=$ $-r(\xi)$, and $H(w)$ has no bound states. Next, define $u(x)$ and $v(x)$ by (3) and (4). Then, from Theorems 2 and 4, it follows that $u(x) \neq v(x), u(x)$ and $v(x)$ belong to $L_{1,0} \backslash L_{1,1}, r_{+}(\xi ; u)=r_{+}(\xi ; v)=r(\xi)$, and $H(u)$ and $H(v)$ have no bound states. Moreover, it follows from Darboux's lemma (cf. [5; p. 88] and $\left[4 ;\right.$ Lemma 1]) that $1 / f_{+}(x, 0 ; w)$ and $1 / f_{-}(x, 0 ; w)$ belong to $S_{+}(u)$ and $S_{-}(v)$ respectively. By combining Theorems 1 and 4, we can show that $u(x)$ and $v(x)$ are the only potentials in $L_{1,0}$ such that their right reflection coefficient coincide with $r(\xi), H(u)$ and $H(v)$ have no bound states, and $S_{+}(u)$ and $S_{-}(v)$ are non-empty.
5. Concluding remark. The inverse problem of the scattering theory without bound states is usually devided into the following three parts (cf. [1; p. 122]) :
I. Uniqueness; Does the reflection coefficient determine the potential?
II. Reconstruction; Give an algorithm for recovering the potential from the reflection coefficient.
III. Characterization; Give necessary and sufficient conditions for a given 2×2 matrix to be the S-matrix of a potential.

By Levinson's theorem, the answer to problem I is yes, if the potential is in $L_{1,1}$. Problems II and III for $L_{1,2}$ were solved by Faddeev [2] and Deift-Trubowitz [1] respectively.

On the other hand, none of these problems for $L_{1,0}$ have been explored. The purpose of the present work is to solve these problems by restricting our attention to the potential $u(x)$ in $L_{1,0} \backslash L_{1,1}$ such that $H(u)$ has no bound states, and $S_{+}(u)$ (or $S_{-}(u)$) is not void.

References

[1] P. A. Deift and E. Trubowitz: Inverse scattering on the line. Commun. Pure Appl. Math., 32, 121-251 (1979).
[2] L. D. Faddeev: Properties of the S-matrix of the one-dimensional Schrödinger equation. Amer. Math. Soc. Transl., (2) 65, 139-166 (1967).
[3] M. Ohmiya: On the Darboux transformation of the 1-dimensional Schrödinger operator and Levinson's theorem. J. Math. Tokushima Univ., 21, 13-26 (1987).
[4] -: On the inverse scattering problem for the 1-dimensional Schrödinger operator with integrable potential. J. Math. Tokushima Univ., 22, 15-28 (1988).
[5] J. Pöschel and E. Trubowitz: Inverse Spectral Theory. Academic, Orland (1987).

