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Generalized Hypergeometric Equations with Certain
Finite Irreducible Monodromy Groups

By Takao SASAI
Department of Mathematics, Tokyo Metropolitan University

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1989)

In this paper we shall study the irreducibility condition for monodromy
groups of generalized hypergeometric equations (say GHGE, for brevity)
and determine, under a certain condition, their explicit forms when they
are finite groups. Recently Beukers-Heckman [1] obtained independently
the same condition ([1], Propositions 2.7 and 3.3) and determined the cases
o finite monodromy groups generally by a method quite different from
ours. So we shall state a remark about the latter from our standpoint.

Let us consider GHGE in the form of Okubo type (see [4]);

( ) (tI-- B) d_fix Ax,
dt

where t e S (the Riemann sphere), x=(x, ..., Xn) is a column n-vector, I is
the n by n unit matrix, B is the n by n diagonal matrix dig (0, ..., O, 1)
and A is an n by n constant matrix;

an_

wih distinct eigenvalues --p, -p, ., --p. oreover we assume the
following;

(A) None of the quantities , a-- and p-p (i, l, re=l,...,
=1,2, ..., --1;,m) is an integer. Noreover each p is not a

ositive integer.
he equation () is Nuehsian on S wih three regular singular points

t=0, 1 and . Nrom (A) here is no logarithmic solution.
Remark 1. Since () is accessory arameer free, he eoeeients

are written in terms of % and p (see [4], 1). Eliminating z,...,
and seting z=z, we obtain
(b) [(+a- 1)... (+ a,_- 1) t(+ 0)" (+ 0)]z 0,
where 8=t(d/dt). I is just he classical GHGN which has

s its prticulr solution at t=0, where (a)=a(a+l)...(a+k--1) (for
details, see [4], 1 and 5).

We first remind Theorem 2 in [4] which ws originally obtMned in [3].
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Let G be the monodromy group with respect to the specific undamental
system X=(X1, ..., X) of solutions of () ([4], Theorem 1). It is a group
representation of the undamental group u(S*) (S*=S\(0,1, oo}) into
GL(n, C) generated by the circuit matrices {M}=0, around 0 and 1. Let
us denote exp (-2uJ- 1 a) and exp (-2uJ- 1 p) by e and f, respectively.
Then M is represented as

e (e-l)pl

M= e_ (e_ 1)p_

0...0 1
(1

1 0

M= 0
1 6

(e,--l)q. .(e--l)q--1

Theorem Z (Okubo-akano). The ollowig eltio holg"

( 2 ) pq=-
e(e 1)(e 1) [I’ (e e)

II sin
sin a. sin a. II sin (a--

here 1 ag II’ are = ag 1-1 repeetivelg=I

emark 3. K. Okabo [2] deermined each connection coefficients
and q xplieitly {se also [4], Theorem 3). I is suffieien for our purpos
to know only Theorem 2 beeaus of th followina araumnts" Let us
assume q0 for all y. Then, if we take to any prassiand non-zro
wlus, are dermined uniquely by (2). Substitutina thos wlues into
{1), we obtain new matrices, say M, and non-sinaular diaonal matrix D
deermined uniquely up to a scalar multipl which satisfy {M,, M,} =D-UD,
wre { } is th aroup anraed by M in UL(, C). Namely preas-
sianed non-zero q’s dermin a aroup representation equivalen to

Now we stat the irreducibility conditions for U which was obtained
independently in [1].

Theorem 4. egibl if ol if f1 fo all y=1,2,

From now on w assume that U i iedible. Let M, be a anral-
ized reflection .

M= ". (-1). U=I, 2, ..., -1),

"i
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i.e., all the diagonal elements are 1 except or the ]-th element which is e
and all off-diagonal elements are 0 except or the (], n)-th element which
is (e-l)p. Obviously we have M0=M01...Mo,n_l. Let us denote M01, ...,
M0,_, M} by G which contains G=(Mo, M} as its subgroup. From the
assumption on G, G is irreducible. If G is finite, so is G, and G must be
a finite unitary reflection group with n reflections as its generators. Such
groups were completely classified by Shephard-Todd [7]. Let us denote the
number k(l_k_37) of the group in table VII in [7] by STk.

In the ollowing our purpose is to determine all cases where G to be
finite when n3. For the case n=2 it is equivalent to determine the same
cases on G which was done by H. A. Schwarz [6]. From the above argu-
ments we obtain a, pe Q. The invarince o the trace o A implies

a=p. On the other hand all M0 and M are written in terms of e
and f. Thus we may assume, by (A) and Theorem 4,
(3) 0a, pl (]=1, 2, ..., n--l; k--l, 2, ..., n).

Lemma 5. If G (n 3) is finite, then the dimension n must be 3.
Let H be the inverse matrix of h;

h= 1
q q

The existeneee of H follows from () and a Z, for det h= [I (sin p/sin
We may assume al<a and pl<p<p.

Lemma 6. H is taken to be hermitian by an appropriate choice of a

diagonal matrix D (Remark 3) if and only if p a p a. p.
This condition leads 0al. The transformed groups of G and G by

D are written again, or simplicity, by G and G, respectively,

Lemma 7. If H is hermitian, then it is G- and G-invariant. More-
over it is positive definite from (3).

Noting these acts in addition to the result ([8], 3.4) due to T.A.
Springer we obtain

Theorem 8. G is finite if and only if the set (a, a, a p, p, p) under
the condition (3) takes one of the following values up to the complex
conjugate"

(_, -;2 -’1 -’4 __)( I ) , NST25 and imprimitive G(Z/3Z Z/3Z

z3z) (z/3z).
2 1 1 7 - ;G=.ST26"(II) -5-;

(_ 1___ 1 1 7 13) G:G~(III) z’ ST26.

1 n m+n 2m+n) for any m, neNwith m>3,1<n(IV) m’’;-’ 3m’ 3m
m, (n, m)= 1; GG(m, 1, 3) and
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(i) GN(G(, 1, 3), I, where =exp(2v/-1/m), if m is even,

(ii) G=G if m is odd.
Remark 9. The following had been presumed from a differential

equational point of view; if G is a finite group, then so is G. However.
the groups G, for examples, corresponding to the cases on the list 8.3 in [1]
are all infinite from Theorem 8.

Remark 10o We found the above case (IV) intuitively and checked
that there is no other finite imprimitive G when m_6 by using MACSYMA
on DEC VAX-11/750. The same fact or any m follows from Theorem 5.8
in [1] which is the only one result of [1] we used. Moreover, in the case (I),
the natural reflection subgroup of G acts reducibly on C ([1], Theorem 5.3).
We also note that (II) and (III) are (5/6)-shift of No. 9 and the complex
conjugate o (1/2)-shift of No. 10 on the table 8.3 in [1], respectively.

Remark 11. Finally we have to point out that the condition stated in
Lemma 6 leads H to be Hermitian and that, in [1], the same implies the
positive definiteness of invariant orms.

Almost all results in this paper were announced in the symposium at
RIMS, October 1988 [5]. Details will appear in elsewhere.
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