58. Uniqueness and Existence of Viscosity Solutions of Generalized Mean Curvature Flow Equations

By Yun-Gang CHEN,*) Yoshikazu GIGA,**) and Shun'ichi GOTO**)

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1989)

1. Introduction. We construct unique global continuous viscosity solutions of the initial value problem in \mathbb{R}^n for a class of degenerate parabolic equations that we shall call *geometric*. A typical example is

$$(1) \qquad u_t - |\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) - \nu |\nabla u| = 0 \qquad \left(u_t = \frac{\partial u}{\partial t}, \ \nabla u = \operatorname{grad} u, \ \nu \in \mathbf{R}\right).$$

Our method is based on the comparison principle of viscosity solutions developed recently by Jensen [8] and Ishii [6]. However, as is observed from (1), our equation is singular at $\nabla u = 0$ so we are forced to extend their theory to our situation.

The equation (1) has a geometric significance because γ -level surface $\Gamma(t)$ of u moves by its mean curvature when $\nu = 0$ provided that Γu does not vanish on $\Gamma(t)$. Such a motion of surfaces has been studied by many authors [1-5]. However, so far whole *unique* evolution families of surfaces were only constructed under geometric restrictions on initial surfaces such as convexity [3,5] except n=2 [1,4]. When n=2, Grayson [4] has shown that any embedded curve moved by its curvature never becomes singular unless it shrinks to a point. However when $n \ge 3$ even embedded surfaces may become singular before it shrinks to a point.

Our goal is to construct whole evolution family of surfaces even after the time when there appear singularities. This program is carried out by Angenent [1] when n=2. Contrary to [1] we avoid parametrization and rather understand surfaces as level sets of viscosity solutions of (1). Let D(t) denote the open set of $x \in \mathbb{R}^n$ such that $u(x, t) > \gamma$. When the equation is geometric, it turns out that the family $(\Gamma(t), D(t))$ $(t\geq 0)$ is uniquely determined by $(\Gamma(0), D(0))$ and is independent of u and γ . By unique existence of viscosity solution of (1) we have a unique family of $(\Gamma(t), D(t))$ for all $t\geq 0$ provided D(0) is bounded open and that $\Gamma(0)$ $(\subset \mathbb{R}^n \setminus D(0))$ is compact. As is expected, we conclude that $(\Gamma(t), D(t))$ becomes empty in a finite time provided $\nu \leq 0$. This extends a result of Huisken [5] where he proved that $\Gamma(t)$ disappears in a finite time provided $\Gamma(0)$ is a uniformly convex C^2 hypersurface.

In this note we state our main results almost without proofs; the details will be published elsewhere.

^{*)} On leave from Nankai Institute of Mathematics, Tianjin, China.

^{**)} Department of Mathematics, Hokkaido University.

2. A parabolic comparison principle. For $h: L \to \mathbb{R}$ $(L \subset \mathbb{R}^d)$ we associate its lower (upper) semicontinuous relaxation $h_*(h^*): \overline{L} \to \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ defined by

 $h_*(z) = \lim_{\varepsilon \downarrow 0} \inf_{|z-y| < \varepsilon} h(y), \quad h^*(z) = -(-h)_*(z), \quad z \in \overline{L}.$

Let Ω be an open subset of \mathbb{R}^n . We write $J(\Omega) = \Omega \times \mathbb{R} \times \mathbb{R}^n \times S^{n \times n}$ and $W = \Omega \times \mathbb{R} \times (\mathbb{R}^n \setminus \{0\}) \times S^{n \times n}$ where $S^{n \times n}$ denotes the space of $n \times n$ real symmetric matrices. Let F = F(t, x, s, p, X) be a real valued function defined in $(0, T] \times W$ for $T < \infty$. Since W is dense in $J(\Omega)$, we see F^* , $F_* : [0, T] \times J(\Omega) \to \overline{\mathbb{R}}$. Any function $u: \Omega_T \to \mathbb{R}$ is called a viscosity sub-(super) solution of (2) $u_t + F(t, x, u, \nabla u, \nabla^2 u) = 0$ in $\Omega_T = (0, T] \times \Omega$ if $u^* < \infty(-\infty < u_*)$ on $\overline{\Omega}_T$ and if, whenever $\phi \in C^2(\Omega_T)$, $(t, y) \in \Omega_T$ and $(u^* - \phi)(t, y) = \max_{\Omega_T} (u^* - \phi) ((u_* - \phi)(t, y) = \min_{\Omega_T} (u_* - \phi)) \phi_t(t, y) + F_*(t, y, u^*(t, y), \nabla \phi(t, y), \nabla^2 \phi(t, y)) \le 0$

 $(\phi_t(t, y) + F^*(t, y, u_*(t, y), \nabla \phi(t, y), \nabla^2 \phi(t, y)) \ge 0).$

If $u: \Omega_T \to \mathbf{R}$ is both a viscosity sub- and supersolution of (2), u is called a viscosity solution of (2). We say F is degenerate elliptic if

 $F(t, x, s, p, X+Y) \leq F(t, x, s, p, X)$

for every $(t, x, s, p, X) \in W$ and $Y \ge O$. We say (2) is a degenerate parabolic equation if F is degenerate elliptic.

Example 1. The equation (1) is degenerate parabolic since (1) is expressed in the form (2) by taking

 $F(t, x, s, p, X) = -\operatorname{trace}\left((I - \overline{p}^t \overline{p})X) - \nu |p|, \qquad \overline{p} = p/|p|.$

Example 2. For $\omega \ge 0$ we set

(3) $\psi^{\pm}(t, x) = \mp (|x| - \omega t)^4$ if $|x| > \omega t$, otherwise $\psi^{\pm}(t, x) = 0$. Suppose that F is elliptic and satisfies

 $(4) \qquad -\nu |p| \leq F(t, x, s, p, O) (\leq \mu |p|) \qquad \text{in } W$

for some constant $\nu \ge 0 (\mu \ge 0)$. Then $\psi^+(\psi^-)$ is a viscosity super-(sub) solution of (2) with $\Omega = \mathbf{R}^n$ provided $\omega \ge \nu$ ($\omega \ge \mu$).

Example 3. The function $U_{\xi h}(t, x) = h(2(n-1)t+|x-\xi|^2)$ is a viscosity solution of (1) in \mathbb{R}^n_T for every T when $\nu = 0$ provided that h is a continuous monotone function on \mathbb{R} .

We now state our main comparison result.

Theorem 4. Let Ω be bounded and let $F: (0, T] \times W \to \mathbb{R}$ is continuous, degenerate elliptic and independent of $x \in \Omega$. Assume that there is a constant $c = c(\Omega, T, M, n)$ such that the function $s \mapsto F(t, s, p, X) + cs$ is nondecreasing in $s \in \mathbb{R}$ for all $t \in (0, T]$, $|s| \leq M$, $p \in \mathbb{R}^n \setminus \{0\}$, $X \in S^{n \times n}$. Suppose furthermore that

(5) $-\infty < F_*(t, s, 0, 0) = F^*(t, s, 0, 0) < \infty, t \in (0, T], s \in \mathbf{R}.$

Let u and v be, respectively, viscosity sub- and supersolutions of (2) in Ω_T . If $u^* \leq v_*$ on $\partial_p \Omega_T = \{0\} \times \Omega \cup [0, T] \times \partial \Omega$, then $u^* \leq v_*$ on Ω_T .

Remark 5. If two inequalities in (4) hold for F and $(t, s, X) \mapsto F(t, s, p, X)$ is equicontinuous for small p, then (5) holds. In particular Theorem 4 is applicable to the equation (1). Although our proof is based

on a parabolic version of Ishii's Proposition 5.1 in [6] (cf. [7]), new idea is necessary to prove Theorem 4 since F is not continuous at p=0 even if we consider its elliptic version. We note that Theorem 3.1 in [6] can be extended even if F is not continuous at p=0 provided (5) holds. Using Perron's method as in [6] we obtain an existence result.

Theorem 6. Let Ω and F be as above. Suppose that there is a viscosity subsolution f and a viscosity supersolution g of (2) such that f, g are locally bounded in $\overline{\Omega}_T$, $f \leq g$ in Ω_T and $f_* = g^*$ on $\partial_p \Omega_T$. Then there is a viscosity solution u of (2) satisfying $u \in C(\overline{\Omega}_T)$ and $f \leq u \leq g$ on $\overline{\Omega}_T$, where $\overline{\Omega}_T = \partial_p \Omega_T \cup \Omega_T$.

3. Geometric equations. We consider a special class of degenerate parabolic equations including (1).

Definition 7. A function $F: (0, T] \times W \rightarrow R$ is called *geometric* if F does not depend on $s \in R$ i.e.

$$F(t, x, s, p, X) = F(t, x, p, X)$$

and for every $\lambda > 0$ and $\sigma \in \mathbf{R}$ it holds

 $F(t, x, \lambda p, \lambda X + \sigma p^{t} p) = \lambda F(t, x, p, X).$

Theorem 8. Suppose that F is degenerate elliptic and geometric in $(0, T] \times W$. If u is a locally bounded viscosity sub-(super) solution of (2) in Ω_T , so is $\theta(u)$ whenever $\theta \colon \mathbf{R} \to \mathbf{R}$ is a continuous nondecreasing function.

The proof depends on approximation of u by semiconvex Lipschitz functions. Example 3 follows from Theorem 8.

4. Evolutions of level surfaces. Suppose that $a \in C(\mathbb{R}^n)$ and $a - \alpha$ is compactly supported for some $\alpha \in \mathbb{R}$. Let u_a denote a viscosity solution of (2) in Ω_T such that $u_a \in C(\overline{\Omega}_T)$ with u(0, x) = a(x) and that $u - \alpha$ has a compact support in $\overline{\Omega}_T$. We state our uniqueness result when $\Omega = \mathbb{R}^n$.

Theorem 9. For $\Omega = \mathbb{R}^n$ we assume F is continuous, geometric, degenerate elliptic and is independent of x in $(0, T] \times W$. Suppose that Fsatisfies (4) and (5). Then there is at most one viscosity solution u_a of (2) in Ω_T with initial data a. Moreover, if $b \ge a$ then $u_b \ge u_a$ on $\overline{\Omega}_T$.

Proof. We may assume $\alpha = 0$. For ψ^{\pm} in (3) we set (6) $f_R = \min(\psi^- - R^4, 0), \quad g_R = \max(\psi^+ + R^4, 0)$ where $\omega \ge \max(\nu, \mu)$ and R > 0. We take R large enough so that $f_R \le a(x) \le b(x) \le g_R$ holds at t=0. Example 2 and Theorem 8 imply that f_R and g_R are, respectively, viscosity sub- and supersolutions of (2) in \mathbb{R}_T^n . Take R_1 such that u_a, u_b, f_R, g_R are supported in $[0, T] \times B(R_1)$ where $B(R_1)$ denotes the open ball of radius R_1 centered at the origin. Applying comparison Theorem 4 with $\Omega = B(R_1)$ yields $u_b \ge u_a$. This implies uniqueness of u_a .

Theorems 8 and 9 yield:

Theorem 10. Suppose F and u_a are as in Theorem 9. Let $\Gamma(t)$ be γ level set of $u_a(t, \cdot)$ and D(t) be a set of $x \in \mathbb{R}^n$ such that $u_a(t, x) > \gamma$. If $\gamma > \alpha$ then $(\Gamma(t), D(t))$ $(t \ge 0)$ is uniquely determined by $(\Gamma(0), D(0))$ and is independent of a, α and γ . We call $(\Gamma(t), D(t))$ is a solution family of (2) with initial data $(\Gamma(0), D(0))$. When (2) is quasilinear, one can construct a global viscosity solution u_a for a given initial data a.

Theorem 11. Suppose that F and a are as in Theorem 9 and that F is linear in X. Then the viscosity solution u_a of (2) in Theorem 9 (uniquely) exists for every T > 0.

For general F we approximate (2) by uniformly parabolic equations and prove convergence of approximate solutions at least for $a \in C^2$. Here f_R and g_R in (6) play a role of "barriers" to get uniform estimates for first derivatives of approximate solutions. As their limit we obtain the viscosity solution u_a . For continuous a, we can approximate it by regular functions and find that Theorem 6 is applicable to get the solution.

For the equation (1) with $\nu = 0$ one can construct u_a via Theorem 6 without using approximate equations. There are viscosity sub- and supersolutions f, g satisfying assumptions of Theorem 6 with f=g=a at t=0. Indeed, for $\xi \in \mathbb{R}^n$ there is a decreasing continuous function h such that $U_{\xi h}(0, x) \leq a(x)$ and $U_{\xi h}(0, \xi) = a(\xi)$ where $U_{\xi h}$ is in Example 3. We define f as the supremum of such $U_{\xi h}$ and find that f=a at t=0 and f is a viscosity subsolution of (2) in \mathbb{R}^n_T . The function g can be constructed similarly. By comparison with $f_R + \alpha$, $g_R + \alpha$ in (6), we see $f=g=\alpha$ outside $[0, T] \times B(R)$ if R is sufficiently large. Theorem 6 with $\Omega = B(R)$ yields the desired solution u_a by defining its value as α outside B(R).

Corollary 12. (i) Suppose F is as in Theorem 11. Suppose that D(0) is bounded open and $\partial D(0) \subset \Gamma(0)(\subset \mathbb{R}^n \setminus D(0))$ is compact. Then there is a unique solution family $(\Gamma(t), D(t))$ for all $t \ge 0$ with initial data $(\Gamma(0), D(0))$.

(ii) Let $(\Gamma(t), D(t))$ be a solution family of (1) with $\nu \leq 0$ such that $D(0) \cup \Gamma(0)$ is bound. Then $(\Gamma(t), D(t))$ becomes empty in finite time.

We note (i) follows from Theorems 10 and 11 with a suitable choice of *a*. For mean curvature flow equation (1), Example 3 yields (ii) by a comparison.

References

- S. Angenent: Parabolic equations for curves on surfaces II, intersections, blow up and generalized solutions. CMS-Technical Summary Report #89-24 University of Wisconsin.
- [2] K. A. Brakke: The Motion of a Surface by its Mean Curvature. Princeton Univ. Press (1978).
- [3] M. Gage and R. Hamilton: The shrinking of convex plane curves by the heat equation. J. Diff. Geom., 23, 69-96 (1986).
- [4] M. Grayson: The heat equation shrinks embedded plane curves to points. ibid., 26, 285-314 (1987).
- [5] G. Huisken: Flow by mean curvature of convex surfaces into spheres. ibid., 20, 237-266 (1984).
- [6] H. Ishii: On uniqueness and existence of viscosity solutions of fully nonlinear second order elliptic PDE's. Comm. Pure Appl. Math., 42, 15-45 (1989).
- [7] H. Ishii and P. L. Lions: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Diff. Eq. (in press).
- [8] R. Jensen: The maximum principle for viscosity solutions of fully nonlinear second-order partial differential equations. Arch. Rational Mech. Anal., 101, 1-27 (1988).