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1. Introduction. The purpose of the present work is to prove the
Deift-Trubowitz trace formula

( 1 ) 2i-’ [ r(G u)f+(x, ; u)2dG--u(x)
,l-

for the 1-dimensional SchrSdingev operator H(u)----+ u(x) with u(x) e IIo
such that u’, u" e L(R), H(u) has no bound states and satisfies the following
conditions (A), (B) and (C)"

(A) r($; u)=l+i+o() as0 for some e R.
(B) R(x), the Fourier transforms of r($; u), are absolutely con-

tinuous, and

(1+ x)]R(x)dx< for all R.

(C) S (u) U S_ (u) .
The notations used in the above are as follows"

H=(ureal, continuous, lim u(x)=0, and ]xlu(x) e L(R)), k e [0, ),

f(x, ; u) are the Jost solutions for H(u), i.e., those solutions of
( 2 ) H(u)f=--f"+u(x)f=f, e R{0}
which behave like exp (ix) as x respectively, r( u) are the re-
flection coefficients of H(u), and S(u) are the sets of solutions f(x)of (2)
for =0 such that limf(x) exist and belong to (0, ), respectively.
Refer [2] and [3] for detail of the scattering theory of H(u) with u e H and
u e H0 respectively.

The trace formula (1) was first proved by Deift and Trubowitz in [2]
for the potential u(x) in H with u’, e L(R) such that H(u) has no bound
states. See also [1]. Our aim is to extend the formula (1) to the potential
mentioned above.

2. Darboux transformation. Let P(H(u)) be the set of positive solu-
tions of the equation (2) for =0. Suppose P(H(u)) . Put A=g-g
for g e P(H(u)). Then H(u)=AA follows, where A is the formal adjoint
of A. We call H*(u;g)=AA the Darboux transformation of H(u) by
g(x) Put

u*(x; g)=u(x)--2(log g(x))",
then H*(u; g) 32+ u*(x g) follows.

Let A(), k2, be the set of potentials u(x) e H such that H(u) has no
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bound states, and r+/-(0; u)=-1. The ollowing is shown in [3] and [4].
Theorem 1. If v(x) A(), then v*(x; f+/-) belong to llo\ll, H*(v f+_)

have no bound states, and S+/-(v*(x f+/-))4= respectively, where
f(x, 0; v) e P(H(v)). Moreover
( 3 ) r(; v*(. f))----r(; v),
( 4 ) f(x, ; v*(. f))= +_i-Af(x, v)
are valid respectively (a---+/-). Conversely, if u(x) llo\II satisfies the con-
ditions (A) and (B), and S(u);, then there uniquely exists v(x)
such that u(x)=v*(x f), respectively.

Here we define F), the subsets of potentials in 11o\11, by
F(.)= {u(x) lu(x)=v*(x f+/-) or v(x) e A()}, k>2,

respectively, where f=f+/-(x, 0;v). Theorem 1 implies that the Darboux
transformations by f+_ give rise to the bijections rom A() onto F(:), respec-
tively. This enables us to characterize F in terms of scattering data
with the condition (C) (c. [4]).

3. Trace formula. In [1] and [2], in addition to (1), they proved the
following ormulas for u(x) e A() with u’, u" e L(R)

j-

The integrals in (5) and (6) are interpreted as principal values.
Now suppose u(x) F). By Theorem 1, there uniquely exists v(x)

such that u(x):v*(x f_), where f f(x, 0; v) P(H(v)). Moreover,
u(x) has two derivatives u’, u"e L(R), then v(x) also has two derivatives

v’, e L(R). Hence, the ormulas (1), (5) and (6) are valid for the poten-
tial v(x). By Theorem 1, we have

f+(x, u)=i-(--f(x, v)+q(x)f+(x, v)),
and r ( u): r ( v), where q(x) =(d/ dx) logf+ (x, 0 v). Hence, by direct
calculation, one verifies

2i-’ r.( u)f+ (x, u)d F(x v),

where F(x v), 1 ]g3, are defined as follows"

F(x ;v)= 2iu- [ -r+($; v)f:(x, ; v)d,
j-

F (x -ai +(x,
j-

F (x; v)y+(x,
d-

By (1), (5) and (6) or v(x), we have immediately

F(x v)- v(x), F(x v)-- O, F(x v) 2q(x).
On the other hand, one can show easily

u(x)=v*(x f+)= --v(x)+ 2q(x).
This implies that the ormula (1 +) holds or u(x) e F( with u’, u" e L(R).
The proof o (1--) or u(x)e F is similar. Moreover, by the parallel
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method, one can show the formula (1) for u(x)e F? with u’, u"e L’(R).
Thus we hve the ollowing.

Theorem 2. The Deift-Trubowitz trace formula (1) is valid also for
the potential u(x) e F(: with u’, u" e El(R).

4. Miscellaneous formulas. Next we will derive the formulas corre-
sponding to (5) and (6) in our case. Define (x; +) by

(7) (x ___)=i- [ $-r($; u)f(x, ; u)d,

(8) (x; ):i-’ .[$-r($; u)f(x,; u)d.

If we assume u(x) e F with u’, u" e L(R), then the integrals in (7) and (8)
converge as principal values, respectively. One verifies that solves the
3-rd order differential equation
( 9 ) "--4u--2u’ 2u’.
Moreover, since f(x, u) behave like exp (ix) as x respectively,

and r(; u)=r(--; u), one can show that (x; ) tendto -1 asx
respectively by the Riemann-Lebesgue theorem. On the other hand one
has

Lemma . Let f(x) and g(x) be solutions of
(10) --y"+u(x)y--O,
then the product f(x)g(x) solves
(11) y’"- 4u(x)y’- 2u’y O,
which is the homogeneous equation associated with (9). Moreover
(12) W(f, fg, g)=2W(f g)
holds, where W(A, --., f)=det (5-f),n are the Wronskians.

Moreover, we have
Lemma 4. If u(x) then f(x, 0; u) exist, and limx f(x, 0; u)

=1 hold, i.e., f(x, 0; u) e S(u), respectively.
On the other hand, it is shown in [4 Theorem 2, p. 18] that if u(x) e Ho

and H(u) has no bound states then S(u)P(H(u)) ollows. Hence, by
Lemm 4, if u(x) e F then f(x, 0; u) e P(H(u)) follows. Now suppose
u(x) e F(2. Put A(x)=f+(x, 0; u) and

0; y (x, 0;

Then f(x)and f(x) are the undamental system of solutions of (10) such
that W(f, f)=l. Hence, by Lemma 3, g(x)=f(xY, g(x)=A(x)f(x) and
g(x)=f(x) are the undmental system of solutions o (11). One verifies
that g(x) tends to 1 as x, and

g(x)=O(x), g(x)=O(x) as x.
On the other hand, because the constant 1 is a particular solution of (9), by
taking into consideration the asymptotic behaviours of and g, we have

(x ) 1 2g(x) 1 2f+ (x, 0 u).
A similar consideration is valid also or u(x) e F(2 with u’, u" e L(R). Thus
we have
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Theorem 5. If u(x) e F( with u’, u" e LI(R) then the formulas
(13_+) i-lf -r_+($; u)f(x,; u)2d+2f+_(x,O; u)2=l,

j-

(14+_) --2i- f -r(; u)f(x, ; u)2d--4f(x, 0; u)2.---u(x)
j-

are valid, respectively.
If u(x) e F then f(x, u)=O(1/) as $-0. Hence (13_+) and (14--+)

have no meaning or u(x) e F respectively.
The detailed proof will appear elsewhere.
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