84. **Regular Elements of Abstract Affine Near-rings**

By Iwao YAKABE

Department of Mathematics, College of General Education, Kyushu University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1989)

1. Introduction. In his paper [2], Steinfeld characterizes the regular elements of a ring in terms of quasi-ideals.

The purpose of this note is to extend the above result to a class of abstract affine near-rings. An example is given to show that the result does not hold for arbitrary near-rings.

For the basic terminology and notation we refer to [1].

2. Preliminaries. Let N be a near-ring, which always means right one throughout this note.

If A, B and C are three non-empty subsets of N, then AB (ABC) denotes the set of all finite sums of the form $\sum a_k b_k$ with $a_k \in A$, $b_k \in B$ ($\sum a_k b_k c_k$ with $a_k \in A, b_k \in B, c_k \in C$), and A * B denotes the set of all finite sums of the form $\sum (a_k(a'_k+b_k)-a_ka'_k)$ with $a_k, a'_k \in A, b_k \in B$. Note that $ABC = (AB)C \subseteq A(BC)$ in general, and that ABC = (AB)C = A(BC) if $A \subseteq N_d$, where N_d is the set of all distributive elements of N.

A right N-subgroup (left N-subgroup) of N is a subgroup H of (N, +)such that $HN \subseteq H$ ($NH \subseteq H$). A quasi-ideal of N is a subgroup Q of (N, +) such that $QN \cap NQ \cap N * Q \subseteq Q$. Right N-subgroups and left N-subgroups are quasi-ideals. The intersection of a family of quasi-ideals is again a quasi-ideal.

Lemma 1. Let e be an idempotent element of a near-ring N, and let R be a right N-subgroup of N. Then the following assertions hold:

(i) R(Ne) = Re.

(ii) Re is a quasi-ideal of N such that $Re = R \cap Ne$.

Proof. (i) We have $R(Ne) = RNe \subseteq Re$ and $Re = Ree \subseteq RNe = R(Ne)$. So R(Ne) = Re.

(ii) Since R and Ne are quasi-ideals of N, it suffices to prove the relation $Re = R \cap Ne$. As $Re \subseteq R \cap Ne$, we have to show only $R \cap Ne \subseteq Re$. Any element x of $R \cap Ne$ has the form x = r = ne with $r \in R$, $n \in N$, whence x = ne= nee = re \in Re.

For an element n of a near-ring N, $(n)_r((n)_l)$ denotes the right (left) Nsubgroup of N generated by n, and [n] denotes the subgroup of (N, +)generated by n.

An element n of a near-ring N is called regular if n = nxn for some element x of N.

Lemma 2. Let n be a regular element of a near-ring N. Then the following assertions hold:

(I) $(n)_r = [n]N \text{ and } (n)_l = Nn.$

(II) There exist idempotent elements e, f in N such that $(n)_r = (e)_r$ and $(n)_i = (f)_i$.

Proof. (1) By the regularity of the element $n, n \in [n]N$. Moreover [n]N is a right N-subgroup of N. So $(n)_r \subseteq [n]N$. Since the inclusion $[n]N \subseteq (n)_r$ always holds, we have $(n)_r = [n]N$. Similarly $(n)_i = Nn$.

(II) As *n* is regular, n = nxn for an *x* in *N*. Put e = nx, then $e^2 = e$ and n = en. Hence $n \in [e]N$ and $e \in [n]N$. These results imply [n]N = [e]N. So, by (I), we have $(n)_r = (e)_r$. Similarly we have $(n)_l = (f)_l$ with $f^2 = f = xn$.

3. Main result. A near-ring N is called an *abstract affine near-ring* if N is abelian and $N_0 = N_d$, where N_0 is the zero-symmetric part of N.

Lemma 3. Let a be an element of an abstract affine near-ring N. Then the following assertions hold:

(A) $(a)_r = [a] + [a]N \text{ and } (a)_r N \subseteq [a]N.$

(B) $(a)_i = [a] + Na \text{ and } N(a)_i \subseteq Na.$

Proof. (A) is evident.

(B) The inclusion $[a] + Na \subseteq (a)_i$ always holds. On the other hand, we have

 $N([a]+Na) = (N_0+N_c)([a]+Na) = N_0[a]+N_0(Na)+N_c,$

where N_c is the constant part of N. Moreover we have

 $N_0[a] + N_c = Na$ and $N_0(Na) \subseteq Na$.

Hence $N([a]+Na) \subseteq Na \subseteq [a]+Na$. Therefore [a]+Na is a left *N*-subgroup of *N* containing the element *a*. So we have $(a)_i \subseteq [a]+Na$. Thus $(a)_i = [a] + Na$. The above argument shows also $N(a)_i \subseteq Na$.

For an element n of a near-ring N, we denote n-n0 by n_0 and n0 by n_c . Then $n=n_0+n_c$ with $n_0 \in N_0$, $n_c \in N_c$.

It is easy to see that, for elements a, b of an abstract affine near-ring N, $(-a)_0 = -a_0$, $(a+b)_0 = a_0 + b_0$ and $(ab)_0 = a_0 b_0$.

Lemma 4. Let a be an element of an abstract affine near-ring N. Then a is regular if and only if $a \in [a]Na$.

Proof. Suppose that $a \in [a]Na$. Then a has the form $a = \sum (i_k a)n_k a$ with integers i_k and $n_k \in N$. By the above remark, we have $a_0 = \sum (i_k a_0)(n_k)_0 a_0$. Put $m = \sum i_k (n_k)_0$, then $a_0 = a_0 m a_0$ and $m \in N_0$. Hence we have

 $a(m-ma_c)a = a(ma-ma_c) = a(ma_0+ma_c-ma_c) = ama_0$

and

 $ama_0 = (a_0 + a_c)ma_0 = a_0ma_0 + a_c = a_0 + a_c = a$.

So $a(m-ma_c)a=a$. Thus a is regular.

Since the converse is evident, the proof is complete.

Now we are ready to state the main result of this note.

Theorem. The following assertions concerning an element a of an abstract affine near-ring N are equivalent:

- (1) a is regular.
- (2) $(a)_r(a)_l = (a)_r \cap (a)_l$.
- (3) $(a)_r^2 = (a)_r$, $(a)_l^2 = (a)_l$ and the product $(a)_r(a)_l$ is a quasi-ideal of N.

Proof. (1) \Rightarrow (3): By Lemma 2, we have $(a)_r = (e)_r$ with a suitable idempotent element e of N. Then $e = e^2 \in (e)_r^2$, and $(e)_r^2$ is a right N-subgroup of N. Hence

$$(a)_r = (e)_r \subseteq (e)_r^2 = (a)_r^2 \subseteq (a)_r,$$

that is, $(a)_r = (a)_r^2$. Similarly $(a)_l = (a)_l^2$.

Again by Lemma 2, we have $(a)_i = (f)_i = Nf$ with a suitable idempotent element f of N. So $(a)_r(a)_i = (a)_r(Nf)$. Hence, by Lemma 1, the product $(a)_r(a)_i$ is a quasi-ideal of N.

(3) \Rightarrow (2): First we show that $(a)_r \cap (a)_i \subseteq (a)_r(a)_i$. The condition (3) and Lemma 3 imply

$$(a)_r = (a)_r^2 \subseteq (a)_r N \subseteq [a] N \subseteq (a)_r,$$

whence $(a)_r = [a]N$. Similarly $(a)_i = Na$. So, by [1, Proposition 9.73], we have

(3.1) $(a)_r = a_0 N_0 + [a] N \cap N_c$ and $(a)_t = N_0 a_0 + N_c$.

From these relations, it follows easily that

 $(a)_r \cap (a)_l = a_0 N_0 \cap N_0 a_0 + [a] N \cap N_c$

and

$$(a)_r(a)_l = (a_0N_0)(N_0a_0) + [a]N \cap N_c.$$

Hence it suffices to show that $a_0N_0 \cap N_0a_0 \subseteq (a_0N_0)(N_0a_0)$.

Now, from the relations (3.1), it follows also that

(3.2) $(a)_r^2 = (a_0 N_0)^2 + [a] N \cap N_c$ and $(a)_l^2 = (N_0 a_0)^2 + N_c$.

The relations (3.1), (3.2) and the condition (3) imply that $a_0N_0 = (a_0N_0)^2$ and $N_0a_0 = (N_0a_0)^2$. Hence we have

$$a_0N_0 = (a_0N_0)^3 \subseteq (a_0N_0)N_0(a_0N_0) = (a_0N_0)(N_0a_0)N_0$$

and

$$N_0a_0 = (N_0a_0)^3 \subseteq (N_0a_0)N_0(N_0a_0) = N_0(a_0N_0)(N_0a_0),$$

whence

 $(3.3) a_0 N_0 \cap N_0 a_0 \subseteq (a_0 N_0) (N_0 a_0) N_0 \cap N_0 (a_0 N_0) (N_0 a_0).$

On the other hand, since $(a)_r(a)_l$ is a quasi-ideal of N, and since $(a)_r(a)_l \cap N_0 = (a_0N_0)(N_0a_0)$, by [3, Proposition 2] the product $(a_0N_0)(N_0a_0)$ is a quasi-ideal of N_0 . So, by [3, Proposition 3], we have

 $(3.4) (a_0N_0)(N_0a_0)N_0 \cap N_0(a_0N_0)(N_0a_0) \subseteq (a_0N_0)(N_0a_0).$

The relations (3.3) and (3.4) imply $a_0N_0 \cap N_0a_0 \subseteq (a_0N_0)(N_0a_0)$. Thus we have $(a)_r \cap (a)_l \subseteq (a)_r(a)_l$.

Since the inclusion $(a)_r(a)_i \subseteq (a)_r \cap (a)_i$ always holds, the proof is complete. (2) \Rightarrow (1): The condition (2) and Lemma 3 imply that

$$a \in (a)_r \cap (a)_l = (a)_r (a)_l \subseteq (a)_r N \subseteq [a]N,$$

whence $(a)_r = [a]N$. Similarly $(a)_i = Na$. So $a \in ([a]N)(Na) \subseteq [a]Na$. Thus, by Lemma 4, a is regular.

4. Remarks. The implications $(1) \Rightarrow (2)$ and $(1) \Rightarrow (3)$ hold for arbitrary

309

No. 8]

.

near-rings. However, the following example shows that neither the assertion (2) nor (3) implies the assertion (1) in general.

Let $N = \{0, a, b, c\}$ be the near-ring due to [1, Near-rings of low order (*E*-21)] defined by the tables

	+	0	a	b	c	•	0	a	b	С
_	0	0	a	b	c	0	0	0	0	0
	a	a	0	С	b	a	a	a	a	a
	b	b	c	0	a	b	0	0	b	0
	c	c	b	a	0	c	a	a	c	a

Then $(c)_r = (c)_l = N$. So, the assertions (2) and (3) hold for the element c. But c is not regular, because cxc = a for all elements x of N.

References

- [1] G. Pilz: Near-rings. 2nd ed., North-Holland, Amsterdam (1983).
- [2] O. Steinfeld: Notes on regular duo elements, rings and semigroups. Studia. Sci. Math. Hung., 8, 161-164 (1973).
- [3] I. Yakabe: Quasi-ideals in near-rings. Math. Rep. Kyushu Univ., 14, 41-46 (1983).