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5. Galois representation arising from the Mordell-Weil lattices. To
explain the basic idea, let us consider the "elementary" situation. Let E be an
elliptic curve defined over Q(t), being a variable over Q, and let f" S--P
be its Kodaira-Nron model, which is an elliptic surface defined over Q.
Assume as before that f is not smooth. Letting Q be the algebraic closure
of Q and K-Q(t), consider the Mordell-Weil group of K-rational points
E(K). Obviously the Galois group Gal (Q/Q) acts on E(K), and it makes
the height pairing stable. Thus we have the Galois representation on the
Mordell-Weil lattice E(K)/(tor) or E(K)" let
(5.1) p" Gal(Q/Q) Aut(E(K)).
There arises a natural question"

Question 5.1. (1) How big can Im(p) be? and"
(2) How small can Im (p) be?

The interest of the first question is obvious. The second one is also interest-
ing, because if the image of p is trivial, then we have E(Q(t))=E(Q(t))so
that the rank of E over Q(t) can be relatively big. The intermediate case
can be also of some interest (e.g. [5]).

Suppose, for instance, that S(R)Q is a rational elliptic surface without
reducible fibres. Then, by Theorem 2.1, the Mordell-Weil lattice is the root
lattice Es, and hence we have
(5.2) p" Gal (Q/Q) >Aut (E) W(E).
The Hasse zeta unction of the surace S over Q is given by
(5.3) (S/Q,s)--(s)(s-1)2(s-2)L(p,s-1)
(up to finitely many Euler actors) where L(p, s) is the Artin L-unction at-
tached to p and (s) is the Riemann zeta unction.

Now the first question asks" is it possible to have Im (p)= W(E) or
some E/Q(t)? We can affirmatively answer this question (Theorem 7.1) and
its variant or E, E, etc. Thus we obtain infinitely many Galois extensions
o Q with Galois group W(E), having ntural representation p on the lat-
rice E. Since W(E) contains a subgroup H o index 2 such that HI{ +1} is

a simple group ([1, Ch. 6]), L(p, s) is essentially of non-abelian type.
Our results also answer the question, first remarked by Weil [9, p. 558]

and then studied by Manin [4, Ch. 4] in more detail, concerning the image

o the Galois representation arising rom the 27 lines on a smooth cubic sur-
ace or more generally rom the exceptional curves on a Del Pezzo surface
(cf. Remark 6.3).
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Now, for the second question as to the case Im (p) trivial, we have also a
satisfactory answer. We obtain 8 parameter family of elliptic curves E,
over Q(t), having 8 free generators of E(Q(t)) which depend rationally on
the parameter 2 (Theorem 7.2).

Needless to say, the generalization of these results to the case of irra-
tional elliptic surfaces (e.g. K3 surfaces) with high rank will be extremely
interesting.

6. Monodromy of the Mordell-Weil lattices. To fix the idea, we con-
sider the family of elliptic curves {E} defined by the Weierstrass ecluation

(6.1) Y-X+(\:0 Pt)x+( :0
qt+t)

where 2=(p0, "-’, P, q0, "", q) e A, the 8-dimensional ane space over Q,
and is a variable over the unction field Q(A). For any 2, E is an elliptic
curve defined over Q()(t). Let S denote the Kodaira-Nron model o E
over Q()(t). It is a smooth algebraic surface defined over Q() such that
SQ(2) is a rational surface, where Q(2) denotes the algebraic closure o
Q(). Since S has a singular fibre of type II over t=, we have the spe-
cialization map sp E(Q(2)(t))Q(2) (Lemma 3.3).

Theorem 6.1. For generic (i.e. for Po, "", q independent variables)
over Q, let P,...,P be a basis of E(Q(2)(t))E, and let u=sp(P).
Then the map
(6.2) p Gal (Q(2)/Q(2))W(E)
is surjective. If is the Galois extension of Q(2) which correspond to
Ker (p), then --Q(2)(u, ..., u)=Q(u,, ..., u). Therefore Q(u, ..., u)/
Q(po, "", q) is a Galois extension with Galois group W(E).

Sketch of the proof. To show the surjectivity of p,, it suffices to prove
it ater we make the base extension o Q to C. Then we observe that, or
any (specialized) 2 e C, the ollowing are equivalent: (i) the Mordell-Weil
lattice E(C(t))E, (ii) S has no reducible fibre and (iii) the ffine surface
S defined by (6.1) is smooth. Hence the locus o 2 e C having Mordell-Weil
lattice E is C--D, D being the discriminant locus o (6.1). Now the amily
(6.1) can be viewed as the semi-universal deformation o the rational double
point of type E: y=x+ t, parametrized by A. Then, by the well-known
result in the singularity theory due to Brieskorn, Tjurina and others (see
e.g. [2], [7]), the monodromy representation

(C--D)W(E)
is surjective, which proves the assertion.

Remark 6.2. As the above sketched proo shows, the monodromy and
"degeneration" o the Mordell-Weil lattices are closely related to the deorma-
tion o certain isolated singularities, not necessarily of rational double points.

Remark 6.. Also there is a close connection etween certain class o
rational elliptic surfaces and the Del Pezzo surfaces. It seems that the geo-
merry of the latter (c. [4]), e.g. the exceptional curves on such, can be much
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better understood in terms of the Mordell-Weil lattices. For instance, a ra-
tional elliptic surface S with Mordell-Weil lattice of type E is the blowing-up
o three infinitely near points o smooth cubic surfaces V and V, and the
54 minimal sections are exactly the pull-back o the 27 lines on each V. We
can explicitly write down "the equation o 27 lines" this way. Similarly,
we have an algebraic equation o degree 240 whose roots are the 240 "roots"
of the root lattice E

7. Arithmetic consequences. The first consequence. By Hilbert’s
irreducibility theorem ([3, Ch. 9]), we have"

Theorem 7.1. There exist infinitely many 2=(P0, "q) Qs with the
following properties (let be defined as before)"

1) /Q is a Galois extension with Galois group W(E).
2) The elliptic curve E over Q(t) has the Mordell-Weil group E(Q(t))

=E((t))E and E(Q(t))=O.
3) The Hasse zeta function of the surface S over Q is given by (5.3)

in which the Artin L-function L(p, s) is essentially of non-abelian type.
It seems possible to give explicit numerical examples as above. (N.B.

The mere existence o infinitely many Galois extensions with Galois group
W(E,) (or any finite reflection group) is trivial in view of Chevalley’s theo-
rem and Hilbert’s irreducibility theorem).

The second consequence. For a moment, let 2=(P0,’’ ", P, q0," ", q) be
generic again. Then, with the notation o Theorem 6.1, u, ..., u are inde-
pendent variables over Q. The ring o W(E)-invariants in Q[u, ..., u] is
a graded polynomial ring with generators of degree 2, 8, 12, 14, 18, 20, 24
and 30 ([1, Ch. 6]). Indeed, we have
(7.1) Q[u, ..., u]) =Q[p0, .", p, q, -", q]
and we can uniquely write
(7.2) p=Io_(u, ...,u), q--Io_(u, ..., u) (0i_3)
where I(u) are polynomials of degree w in u, ..., u with Q-coefficients.
On the other hand, let u=sp(P) (]=1, ..., 240) be all the "roots"" each u
is a Z-linear combination o u, ..., u. Let (u)=II<(u--u). With these
notation, we have

Theorem 7.2. For any u-(u, ., u,) e Q such that (u):/:O, define
p, q e Q by (7.2) and let 2=(P0, "", P, qo, "", q) e Q. Then the elliptic
curve E over Q(t), defined by (6.1), has the Mordell-Weil group E(Q(t)) of
rank 8 (without any constant field extension). Moreover there is a basis

{P, P} of E(Q(t)), of the form P=(x, y) with
-2(7.3) x=u t / at/ b, y=u;t / ct /d/ e,

which depend rationally on the parameters u, ..., u.
Corollary 7.:. Fix u=(u, ..., u) e QS and 2=(po, "", q.) e Q as

above. Then, specializing t to any rational number (with only finitely many
exception), we obtain a family of elliptic curves E(), given with Q-rational
points pt), ..., p(), such that
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(7.4) lim det ((P), PJ.)}cn/h(t))=2 -8

h(t)

where h(t) is the standard height of a point on PQ and (, }on is the canoni-
cal height on the Mordell-Weil group of an elliptic curve over Q (cf. [8]).

This ollows rom Tate’s theorem (loc. cit) and det (E)=I. The actor
2 is caused by our definition o the height pairing (the part I) which differs
rom that o [8] by multiplication by 2.

Added in Proof. The question 2.4 has a negative answer in general,
as pointed out by K. Oguiso.
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