86. Weyl's Type Criterion for General Distribution Mod 1

By Masumi NAKAJIMA*) and Yukio OHKUBO**)

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 13, 1989)

1. In 1916, Weyl [6] has proposed the following necessary and sufficient condition for uniform distribution mod 1 of the real number sequences which is now called Weyl's criterion: The sequence (x_n) , $(n=1, 2, 3, \dots)$ is uniformly distributed mod 1, if and only if

$$\lim_{\scriptscriptstyle N\to\infty}\frac{1}{N}\sum_{n=1}^N e^{2\pi i\nu x_n}\!=\!0$$

for any natural number v.

Schoenberg [5], in 1928, first generalized the concept of uniform distribution mod 1 to that of general distribution mod 1 (or asymptotic distribution mod 1) and obtained many interesting results including generalizations of Weyl's criterion. Later many mathematicians have also proposed various forms of criteria for general distribution mod 1 (cf. [3]). But their criteria were not of exponential sum type. Among them, Helmberg [2] has made an interesting contribution to this field with view points concerning mainly numerical computations of the integrals of type: $\int_0^{\infty} f(x)dx$. Recently the first author found a natural generalization of Weyl's criterion (Theorem 1) which seems new to the authors. In this note, we give this criterion for generally distributed mod 1 sequences with some applications: estimations of some trigonometric sums, a generalization of Erdös-Turán's theorem and a generalization of LeVeque's inequality. The proof of these results and other results in various directions will be given elsewhere.

2. Definition. Let $\mu(x)$ be a distribution function with $\mu(0)=0$, $\mu(1)=1$, $d\mu(x)=w(x)dx$ where w(x) is the density function of $\mu(x)$ satisfying the following conditions: (a) w(x) is piecewise continuous on [0,1] and $0 < w(x) < +\infty$. (b) The number of the discontinuity points of w(x) is finite. (c) $\{z \in [0,1] | \lim_{x \to z=0} w(x)=0 \text{ or } \lim_{x \to z=0} w(x)=0 \} < \infty$, where A denotes the number of elements of the set A. Then, the real number sequence $(x_n)_{n=1}^{\infty}$ is called μ -distributed mod 1, if

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N \chi([0,x):\{x_n\}) = \mu(x)$$

for each $x \in [0, 1]$, where $\chi([0, x): u)$ is the indicator function of [0, x) and $\{x\}$ denotes the fractional part of x.

3. Results. Then we have the main theorem.

Theorem 1. The sequence (x_n) is μ -distributed mod 1, if and only if

^{*)} Department of Mathematics, Rikkyo University.

^{**)} Yakuendai Senior High School.

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\frac{e^{2\pi i\nu x_n}}{w(\{x_n\})}=\delta_{\nu,o}$$

for all $\nu \in \mathbb{Z}$, where $\delta_{\nu,\mu}$ is Kronecker's delta.

From Theorem 1, we have the following two examples of estimations of trigonometric sums.

(1)
$$\sum_{n \leq x} \sqrt{1 - \{\sin(n\theta)\}^2} e^{2\pi i \nu \sin(n\theta)} = o(x)$$

for any $\nu \in N$ and any $\theta \in Q$.

(2)
$$\sum_{n \leq x} 2^{\{n\alpha\}} e^{2\pi i \nu 2^{\{n\alpha\}}} = o(x)$$

for any $\nu \in N$ and any irrational α , where $o(\cdot)$ denotes Landau's small *o*-symbol.

Next, we give the following generalizations of Erdös-Turán's theorem and LeVeque's inequality.

Theorem 2. For any $m \in N$, any sequence $\xi = \{x_1, x_2, \dots, x_N\}$ with $0 \leq x_1 < 1$ and any distribution function $\mu(x)$, we have

$$D_{N} \leq C_{1} \left(\frac{6}{m+1} + \frac{4}{\pi} \sum_{\nu=1}^{m} \left(\frac{1}{\nu} - \frac{1}{m+1} \right) \left| \frac{1}{N} \sum_{n=1}^{N} \frac{e^{2\pi i \nu x_{n}}}{w(x_{n})} - \left(\frac{1}{N} \sum_{n=1}^{N} \frac{1}{w(x_{n})} - 1 \right) \right| + 6 \left| \frac{1}{N} \sum_{n=1}^{N} \frac{1}{w(x_{n})} - 1 \right| + 4 \left| \frac{1}{N} \sum_{n=1}^{N} \frac{x_{n}}{w(x_{n})} - \frac{1}{2} \right| \right),$$

where

$$D_{N} = D_{N}(\xi; \mu) = \sup_{0 \le a \le b \le 1} \left| \frac{1}{N} \sum_{n=1}^{N} \chi([a, b): x_{n}) - (\mu(b) - \mu(a)) \right|$$

is the discrepancy of the sequence ξ with respect to $\mu(x)$ and C_1 is a computable constant depending only on $\mu(x)$.

Theorem 3. For any $m \in N$, any sequence $\xi = \{x_1, x_2, \dots, x_N\}$ with $0 \leq x_j < 1$ and any distribution function $\mu(x)$, we have

$$egin{aligned} D_{_N} \leqslant & C_2 \Big(rac{6}{\pi^2} \sum \limits_{
u=1}^{\infty} rac{1}{
u^2} igg| rac{1}{N} \sum \limits_{n=1}^{N} rac{e^{2\pi i
u x_n}}{w(x_n)} - \Big(rac{1}{N} \sum \limits_{n=1}^{N} rac{1}{w(x_n)} - 1 \Big) igg|^2 \ &+ 4 \, \max \left(\Big(rac{1}{N} \sum \limits_{n=1}^{N} rac{x_n}{w(x_n)} - rac{1}{2} \Big)^3, 0
ight) \ &- 4 \, \min \left(\left(\Big(rac{1}{N} \sum \limits_{n=1}^{N} rac{x_n}{w(x_n)} - rac{1}{2} \Big) - \Big(rac{1}{N} \sum \limits_{n=1}^{N} rac{1}{w(x_n)} - 1 \Big)
ight)^3, 0
ight) \ \end{aligned}$$

where C_2 is a computable constant depending only on $\mu(x)$.

In these theorems, the extra term:

$$\frac{1}{N}\sum_{n=1}^{N}\frac{x_n}{w(x_n)}-\frac{1}{2}$$

appears. In case of uniform distribution mod 1, this term does not appear due to the invariance of the discrepancy extended over all half-open intervals mod 1 under the translation: $T(x_n) = x_n + c$ ([3], p. 114).

References

- [1] Erdös, P. and Turán, P.: On a problem in the theory of uniform distribution.
 I, II. Indag. Math., 10, 370-378, 406-413 (1948).
- [2] Helmberg, G.: Gleichverteilte Folgen in lokal kompakten Raumen. Math. Zeit., 86, 157-189 (1964).
- [3] Kuipers, L. and Niederreiter, H.: Uniform Distribution of Sequences. John Wiley and Sons, New York (1974).
- [4] LeVeque, W. J.: An inequality connected with Weyl's criterion for uniform distribution. Proc. Symp. Pure Math., vol. XIII, Amer. Math. Soc., Providence, R. I., pp. 22-30 (1965).
- [5] Schoenberg, I.: Über die asymptotische Velteilung reeller Zahlen mod 1. Math. Zeit., 28, 171-199 (1928).
- [6] Weyl, H.: Über die Gleichvelteilung von Zahlen mod. Eins. Math. Ann., 77, 313-352 (1916).