94. On the Automorphism Groups of Edge-coloured Digraphs

By Mitsuo Yoshizawa

Department of Mathematics, Josai University

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1989)

1. Introduction. For any finite group $G = \{g_1, g_2, \dots, g_q\}$, we construct an edge-coloured strongly connected digraph $\Delta = \Delta(G)$ with the vertexset $V\Delta = \{g_1, g_2, \dots, g_q\}$ such that for any two vertices u and v of Δ both (u, v) and (v, u) are directed edges of Δ and they are coloured with colours $u^{-1}v$ and $v^{-1}u$ respectively. Then the (colour-preserving) automorphism group Aut Δ of Δ on $V\Delta$ is isomorphic to the regular representation [4] of G as a permutation group ([5, p. 96, Lemma 3.1]). On the other hand, Frucht [1] and Sabidussi [2] proved the following: For any finite group G and any integer $k \geq 3$ there exist infinitely many connected k-regular (undirected) graphs Γ in which $V\Gamma$ has a disjoint union decomposition $V\Gamma = \sum_{i=1}^{q} V_i$ (q = |G|) such that the automorphism group Aut Γ of Γ acts faithfully on the set $\{V_1, V_2, \dots, V_q\}$ by the natural action and the permutation group derived by its action is isomorphic to the regular representation of G as a permutation group.

In this paper we shall extend the above. Let Δ be an edge-coloured digraph and C be the set of colours c with which at least one directed edge of Δ is coloured. We define a uniquely definite positive integer $\lambda(\Delta)$ as follows. For any vertex x of Δ and c in C let $\lambda_{in}(x; c)$ denote the number of directed edges with colour c having x as head and $\lambda_{out}(x; c)$ denote the number of directed edges with colour c having x as tail. We define $\lambda_{max}(\Delta) = \max{\{\lambda_{in}(x; c), \lambda_{out}(x; c): x \in V\Delta, c \in C\}}$ and $\lambda(\Delta) = \max{\{\lambda_{max}(\Delta)+1, 3\}}$. The purpose of this paper is to prove

Theorem. Let Δ be an edge-coloured weakly connected digraph with $|V\Delta|=n$. Then for any integer $k \geq \lambda(\Delta)$ there exist infinitely many connected k-regular (undirected) graphs Γ in which $V\Gamma$ has a disjoint union $V\Gamma = \sum_{i=1}^{n} V_i$ such that Aut Γ acts faithfully on the set $\{V_1, V_2, \dots, V_n\}$ by the natural action and the permutation group derived by its action is isomorphic to the (colour-preserving) automorphism group Aut Δ of Δ on $V\Delta$ as a permutation group.

2. Preliminaries. Unless stated otherwise, all graphs are finite, undirected, simple and loopless. If an edge e joins two vertices u and v, we write e = [u, v] = [v, u]. If Aut $\Gamma = 1$, Γ is called asymmetric.

Now we introduce a notion of the type [1] (a_1, a_2, \dots, a_r) (r=m(m-1)/2) of a vertex v of valency m in a graph Γ . Let u_1, u_2, \dots, u_m be the adjacent vertices of v. We define the number α_{ij} (i < j) as follows:

 α_{ij} = the minimum length of circuits which contain the two edges $[u_i, v]$

No. 10]

and $[v, u_j]$ if there exists such a circuit,

 $=\infty$ otherwise.

By ranging m(m-1)/2 numbers of α_{ij} 's in increasing order, we get the type (a_1, a_2, \dots, a_r) of v, where r = m(m-1)/2, $a_1 \leq a_2 \leq \dots \leq a_r$ and $\{a_1, a_2, \dots, a_r\} = \{\alpha_{ij} : 1 \leq i < j \leq m\}$.

We shall make substantial use of methods of Sabidussi [2,3]: For graphs $\Gamma_1, \Gamma_2, \cdots$ and Γ_h we define the product $\prod_{i=1}^{h} \Gamma_i$ by

 $V(\prod_{i=1}^{h} \Gamma_i) = \prod_{i=1}^{h} V \Gamma_i$ (the cartesian product of the sets $V \Gamma_i$),

 $E(\prod_{i=1}^{h} \Gamma_i) = \{ [(u_1, u_2, \cdots , u_h), (v_1, v_2, \cdots, v_h)] : \{i : u_i \neq v_i, 1 \leq i \leq h\} \text{ is a one-element set } \{j\} \text{ satisfying } [u_i, v_j] \in E\Gamma_j \}.$

A graph Γ is called prime if Γ is non-trivial and if $\Gamma \cong \Lambda \times \Pi$ implies that Λ or Π is trivial, where a trivial graph is a vertex-graph. Two graphs Γ_1 and Γ_2 are called relatively prime if $\Gamma_1 \cong \Gamma'_1 \times \Pi$ and $\Gamma_2 \cong \Gamma'_2 \times \Pi$ imply that Π is a trivial graph. We say that a connected graph Γ can be decomposed into prime factors if there exist connected prime graphs Γ_1 , Γ_2 , \cdots , Γ_r satisfying $\Gamma \cong \prod_{i=1}^r \Gamma_i$.

We suppose that any digraph Δ has no loops. We denote a directed edge whose tail is u and whose head is v by (u, v). An edge-coloured digraph Δ is a digraph Δ together with a function $\phi: E\Delta \rightarrow C$ which maps $E\Delta$ into a set C of colours. Of course any automorphism of an edge-coloured digraph Δ must preserve colours.

Lemma 1. Let u, v be vertices of graphs Γ_1, Γ_2 respectively. Then the valency of (u, v) in $\Gamma_1 \times \Gamma_2$ is the sum of the valencies of u and v.

Lemma 2 [2]. If in a connected graph Γ there is an edge which is not contained in a 4-cycle, then Γ is prime.

Proposition 1 [3]. Let $\Gamma_1, \Gamma_2, \dots, \Gamma_n$ be connected relatively prime graphs. Then

Aut $(\prod_{i=1}^{h} \Gamma_i) \cong \prod_{i=1}^{h} \operatorname{Aut} \Gamma_i.$

Proposition 2 [3]. If a connected graph Γ has a prime factor decomposition, then the prime factor decomposition of Γ is unique up to isomorphisms.

Corollary 1. Any connected graph has the unique prime factor decomposition up to isomorphisms.

The proofs of the following Lemmas 3, 4, 5 and 6 are easy.

Lemma 3. There is a connected 3-regular asymmetric graph Γ of girth 5.

Lemma 4. For any even integer $n \ge 26$ there is a connected 3-regular asymmetric prime graph Γ of girth 4 with $|V\Gamma| = n$ such that $\Gamma - e$ is a connected graph of girth 4 for some edge e of Γ .

Lemma 5. There exist infinitely many connected 4-regular asymmetric prime graphs Γ of girth 4 such that $\Gamma - e$ is a connected graph of girth 4 for some edge e of Γ .

Lemma 6. There exist infinitely many connected 5-regular asymmetric prime graphs Γ of girth 4 such that Γ -e is a connected graph of girth 4

for some edge e of Γ .

Proposition 3. For any integer $m \ge 3$ there exist infinitely many connected m-regular asymmetric graphs Γ of girth 4 such that $\Gamma - e$ is a connected graph of girth 4 for some edge e of Γ .

Proof. Let t be an integer with $t \equiv m \pmod{3}$ and $3 \leq t \leq 5$. Let us set q = (m-t)/3. By Lemmas 4, 5 and 6 there exist non-isomorphic q+1 connected asymmetric prime graphs $\Gamma_0, \Gamma_1, \dots, \Gamma_q$ of girth 4 such that Γ_0 is t-regular and Γ_i is 3-regular $(1 \leq i \leq q)$ and that $\Gamma_0 - e_0$ is a connected graph of girth 4 for some edge e_0 of Γ_0 . Then the product $\Gamma = \Gamma_0 \times \Gamma_1 \times \cdots \times \Gamma_q$ is a connected m-regular graph of girth 4 such that $\Gamma - e$ is a connected graph of girth 4 for some edge e of Γ . By Proposition 1 Γ is asymmetric.

Corollary 2. For any integer $m \ge 3$ there exist infinitely many connected asymmetric graphs Γ of girth 4 such that just two vertices of Γ have valency m-1 and every other vertex of Γ has valency m.

Proof. Let Γ be a connected *m*-regular asymmetric graph of girth 4 such that $\Gamma - e$ is a connected graph of girth 4 for some edge e of Γ . Since Aut $(\Gamma - e)$ is a subgroup of Aut Γ , Aut $(\Gamma - e) = 1$ holds. Hence by Proposition 3 we complete the proof.

3. Proof of Theorem. Let Δ be an edge-coloured weakly connected digraph with $|V\Delta| = n$ and k be any integer with $k \ge \lambda(\Delta)$. Let E_1, E_2, \dots, E_s be the all orbits [4] of Aut Δ on $E\Delta$. Obviously two directed edges which are in the same orbit E_i have the same colour, but two directed edges which are in different orbits E_i and E_j do not necessarily have different colours. Now let $C = \{c_1, c_2, \dots, c_s\}$ be a set of (different) s colours. We paint the directed edges in E_i the colour c_i for convenience $(i=1, 2, \dots, s)$. We remark that the permutation group Aut Δ on $V\Delta$ is unchangeable and $\lambda(\Delta)$ does not become larger by the painting. Hence from now on we prove the theorem on Δ which has been changed as above.

Let b be a positive integer satisfying $4s < k(k-1)^{b}$. For any $x \in V \Delta$ we first define a graph Ω_{x} by

$$\begin{split} V\Omega_x = & \{x_i \colon 1 \le i \le k\} \cup \{x_{ij} \colon 0 \le i \le b, \ 1 \le j \le k(k-1)^i\} \\ & \cup \{x_{b+1j} \colon 1 \le j \le k(k-1)^b\} \text{ (disjoint union),} \\ E\Omega_x = & \{[x_i, x_j] \colon 1 \le i < j \le k\} \cup \{[x_i, x_{0i}] \colon 1 \le i \le k\} \cup \{[x_{ij}, x_{i+1h}] \colon \\ & 0 \le i \le b-1, \ 1 \le j \le k(k-1)^i, \ (j-1)(k-1)+1 \le h \le j(k-1)\} \\ & \cup \{[x_{b,i}, x_{b+1i}] \colon 1 \le j \le k(k-1)^b\}. \end{split}$$

Then Ω_x is a connected graph in which the vertices x_{bj} $(j=1, 2, \dots, k(k-1)^b)$ have valency 2, the vertices $x_{b+1j}(j=1, 2, \dots, k(k-1)^b)$ have valency 1 and the other vertices have valency k. Let us set

$$p = k(k-1)^{b}/2,$$

$$q = \{k(k-1)^{b}(k-2) + k(k-1)^{b}(k-1) - 2\sum_{i=1}^{s} \lambda_{out}(x; c_{i}) - 2\sum_{i=1}^{s} \lambda_{in}(x; c_{i})\}/2.$$

By Corollary 2 we have non-isomorphic q graphs $A(x_{bj}, r)$ $(j=1, 2, \dots, p; r=1, 2, \dots, k-2)$, $A(x_{b+1j}, r)$ $(j=1, 2, \dots, s; r=1, 2, \dots, (k-1) - \lambda_{out}(x; c_j))$, $A(x_{b+1j}, r)$ $(j=s+1, s+2, \dots, 2s; r=1, 2, \dots, (k-1) - \lambda_{in}(x; c_{j-s}))$ and

 $\Lambda(x_{b+1,j}, r)$ $(j=2s+1, 2s+2, \dots, p; r=1, 2, \dots, k-1)$ each of which is a connected asymmetric graph Λ of girth 4 such that just two vertices of Λ have valency k-1 and every other vertex of Λ has valency k. Let $u(x_{h,j}, r)$ and $u'(x_{h,j}, r)$ $(b \leq h \leq b+1)$ be the vertices of valency k-1of $\Lambda(x_{h,j}, r)$. Next we define a graph Π_x by

$$\begin{split} V\Pi_{x} &= V\Omega_{x} \stackrel{`}{\cup} (\sum_{j,r} V(A(x_{bj},r))) \stackrel{`}{\cup} (\sum_{j,r} V(A(x_{b+1j},r))) \text{ (disjoint union),} \\ E\Pi_{x} &= E\Omega_{x} \cup (\sum_{j,r} E(A(x_{bj},r))) \cup (\sum_{j,r} E(A(x_{b+1j},r))) \cup \{[x_{bj}, u(x_{bj},r)], [x_{bj+p}, u'(x_{bj},r)]: 1 \leq j \leq p, 1 \leq r \leq k-2\} \cup \{[x_{b+1j}, u(x_{b+1j},r)], [x_{b+1j+p}, u'(x_{b+1j},r)]: 1 \leq j \leq s, 1 \leq r \leq (k-1) - \lambda_{\text{out}}(x; c_{j})\} \cup \{[x_{b+1j}, u(x_{b+1j},r)], [x_{b+1j+p}, u'(x_{b+1j},r)]: s+1 \leq j \leq 2s, 1 \leq r \leq (k-1) - \lambda_{\text{in}}(x; c_{j-s})\} \cup \{[x_{b+1j}, u(x_{b+1j},r)], [x_{b+1j+p}, u'(x_{b+1j+p}, u'(x_{b+1j},r)]: 2s+1 \leq j \leq p, 1 \leq r \leq k-1\}. \end{split}$$

Then Π_x is a connected graph in which there exists the unique complete subgraph with k vertices induced by $\{x_1, x_2, \dots, x_k\}$ and both vertices x_{b+1j} and x_{b+1j+p} have valency $k - \lambda_{out}(x; c_j)$ for $j=1, 2, \dots, s$, both vertices x_{b+1j} and x_{b+1j+p} have valency $k - \lambda_{in}(x; c_{j-s})$ for $j=s+1, s+2, \dots, 2s$ and every other vertex has valency k. By Corollary 2 we may assume that every Π_x $(x \in V \Delta)$ is asymmetric and for $x, y \in V \Delta$, Π_x is isomorphic to Π_y if and only if there is an automorphism σ of Δ with $\sigma(x)=y$. Moreover we may assume that if Π_x is isomorphic to Π_y for $x, y \in V \Delta$, then the isomorphism from Π_x to Π_y has the correspondence of x_{b+1j} to y_{b+1j} $(1 \leq j \leq k(k-1)^b)$. Last we define a graph Γ by

$$V\Gamma = \sum_{x \in V\Delta} V\Pi_x \text{ (disjoint union),}$$
$$E\Gamma = (\sum_{x \in V\Delta} E\Pi_x) \cup \{ [x_{b+1\,i}, y_{b+1\,s+i}], [x_{b+1\,i+p}, y_{b+1\,s+i+p}] \colon (x, y) \in E\Delta,$$

the colour of (x, y) is $c_i \}.$

Then Γ is a connected k-regular graph such that Aut Γ acts faithfully on the set $\{V\Pi_x : x \in V\varDelta\}$ by the natural action and the permutation group derived by its action is isomorphic to the automorphism group Aut \varDelta of \varDelta on $V\varDelta$ as a permutation group by the correspondence of $V\Pi_x$ to $x \ (x \in V\varDelta)$.

References

- R. Frucht: Graphs of degree three with a given abstract group. Can. J. Math., 1, 365-378 (1949).
- [2] G. Sabidussi: Graphs with given group and given graph-theoretical properties. ibid., 9, 515-525 (1957).
- [3] ----: Graph multiplication. Math. Z., 72, 446-457 (1960).
- [4] H. Wielandt: Finite Permutation Groups. Academic Press, New-York, London (1964).
- [5] H. P. Yap: Some topics in graph theory. London Math. Soc., Lecture Notes, 108, Cambridge University Press, Cambridge (1986).