8. A Counterexample in the Theory of Prehomogeneous Vector Spaces

By Akihiko Gyoja
College of General Education, Osaka University
(Communicated by Shokichi IYanagA, m. J. A., Jan. 12, 1990)

1. Let G be a linear algebraic group defined over the complex number field $C,(G, \rho, V)$ a prehomogeneous vector space and Ω the open dense G-orbit in V. (See below for the definitions.) If G is reductive and (G, ρ, V) is regular, then the open subvariety Ω of V is an affine variety [2]. Here the regularity condition is known to be essential, but it seems that the reductivity of G was expected not to be essential. The purpose of this note is to give a counterexample to this expectation.
2. Prehomogeneous vector spaces. Let G be as above, $V=C^{k}$, and $\rho: G \rightarrow G L(V)$ a rational representation of G. Such a triplet (G, ρ, V) is called a prehomogeneous vector space if V has an open dense G-orbit. (Here and below, we exclusively consider the Zariski topology.) Such an orbit is unique and we shall denote it by Ω. A prehomogeneous vector space (G, ρ, V) is called regular if there exists a polynomial function $f(x)=f\left(x_{1}, \cdots, x_{k}\right)$ on V which satisfies the following two conditions:
(R1) There exists a rational character ϕ of G such that $f(\rho(g) v)=$ $\phi(g) f(v)$ for any $g \in G$ and $v \in V$.

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial^{2} \log f}{\partial x_{i} \partial x_{j}}\right)_{1 \leq i, j \leq k} \neq 0 \quad \text { on } \Omega . \tag{R2}
\end{equation*}
$$

3. Tits system. Let $G=G L_{n}(C), B$ be the Borel. subgroup of G consisting of upper triangular matrices, T the maximal torus of B consisting of diagonal matrices, $N=N_{G}(T)$ the normalizer of T in G and $W=N / T$ the Weyl group. Let \mathbb{S}_{n} be the symmetric group acting on $\{1,2, \cdots, n\}$ and \dot{W} the group of permutation matrices in $G L_{n}(C)$. Then we have natural isomorphisms $\mathbb{S}_{n} \simeq \dot{W} \simeq W$, by which we shall identify these three groups. Let S be the set of transpositions $\{(1,2),(2,3), \cdots,(n-1, n)\}$ and

$$
w_{0}=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
n & n-1 & \cdots & 1
\end{array}\right)
$$

Then (G, B, N, S) is a Tits system [1; chapter 4, section 2]. For a subset X of S, let W_{X} be the subgroup of W generated by X and $G_{X}=B W_{X} B$. Every element $w \in W$ can be expressed as $w=s_{1} s_{2} \cdots s_{a}\left(s_{i} \in S\right)$. Define the length $l(w)$ of w to be the minimum of the length a of such an expression. It is known that $l(w)=\operatorname{dim} B w B-\operatorname{dim} B$. If $x, y \in W$ can be expressed as

$$
x=s_{1} s_{2} \cdots s_{a} \quad\left(s_{i} \in S, a=l(x)\right),
$$

and

$$
y=s_{i_{1}} s_{i_{2}} \cdots s_{i_{b}} \quad\left(1 \leq i_{1}<i_{2}<\cdots i_{b} \leq \alpha\right)
$$

then we write $x \leq y$. This relation defines a partial order in W which is called the Bruhat order. It is known that $x \leq y$ if and only if $\overline{B x B} \subset \overline{B y B}$, where the closure may be taken in $G L_{n}(\boldsymbol{C})$ or $M_{n}(\boldsymbol{C})$.
4. Counterexample. Let X and Y be two subsets of S. Define a $G_{X} \times G_{Y}$-action on $M_{n}(C)$ (the totality of $n \times n$-matrices) by $\rho\left(g_{1}, g_{2}\right) v=g_{1} v g_{2}^{-1}$ for $v \in M_{n}(C)$ and $\left(g_{1}, g_{2}\right) \in G_{X} \times G_{Y}$.
(1) $\left(G_{X} \times G_{Y}, \rho, M_{n}(C)\right)$ is a prehomogeneous vector space, whose open dense orbit is $G_{X} w_{0} G_{Y}$.
(2) Moreover, it is regular, since $f(v)=\operatorname{det} v\left(v \in M_{n}(C)\right)$ satisfies the conditions (R1) and (R2).
(3) Let $\left\{w_{1}, \cdots, w_{m}\right\}$ be the set of maximal elements of $W-W_{X} w_{0} W_{Y}$ with respect to the Bruhat order. Then the irreducible components of $M_{n}(C)-G_{X} w_{0} G_{Y}$ are

$$
C_{0}=\left\{v \in M_{n}(C) \mid \operatorname{det} v=0\right\}
$$

and

$$
C_{i}=\text { closure of } B w_{i} B \text { in } M_{n}(C) \quad(1 \leq i \leq m)
$$

In fact

$$
\begin{aligned}
M_{n}(\boldsymbol{C})-G_{X} w_{0} G_{Y} & =C_{0} \cup\left(G-G_{X} w_{0} G_{Y}\right) \\
& =C_{0} \cup B\left(W-W_{X} w_{0} W_{Y}\right) B=\bigcup_{0 \leq i \leq m} C_{i} .
\end{aligned}
$$

(4) An open subvariety O of C^{k} is an affine variety if and only if every irreducible component of $C^{k}-O$ is a hypersurface. In fact, a regular function outside of a subvariety Z of codimension ≥ 2 extends to the whole space. Hence the spectrum of the ring of regular functions contains Z.
(5) The following conditions are equivalent:
(i) The open orbit $G_{X} w_{0} G_{Y}$ is an affine variety.
(ii) $\operatorname{dim} C_{i}=\operatorname{dim} G-1 \quad(1 \leq i \leq m)$.
(iii) $l\left(w_{i}\right)=l\left(w_{0}\right)-1 \quad(1 \leq i \leq m)$.

Now we can give a counterexample. Let $n=3, s_{1}=(1,2), s_{2}=(2,3)$ and $X=Y=s_{1}$. Then $w_{0}=s_{1} s_{2} s_{1}$ and $W-W_{X} w_{0} W_{Y}=\left\{1, s_{1}\right\}$. Hence $m=1$ and $w_{1}=s_{1}$. Since $l\left(w_{0}\right)=3$ and $l\left(w_{1}\right)=1, G_{X} w_{0} G_{Y}$ is not an affine variety.

References

[1] N. Bourbaki: Groupes et Algèbres de Lie. Chapitres 4, 5 et 6, Hermann, Paris (1968).
[2] M. Sato and T. Kimura: A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J., 65, 1-155 (1977).

