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7. Invariants and Hodge Cycles. III

By Michio KUGA,*) Walter PARRY,**) and Chih-Han SAH*)

(Communicated by Shokichi IYANhC)., M. . ).., Jan. 12, 1990)

The present work is a continuation of [1] and [2]. Consider a GTAS
(Group Theoretic Abelian Scheme) " A-+V=F\. The space

H(,’(A) H(A, Q), (r--2p)
of Hodge cycles in a generic fibre A is controlled by an invariant theory of
G, [1], [2], where G is the Q-semisimple algebraic group attached to V. In
fact, when A is rigid, the space H(P’)(A) H(A, Q) coincides with the space
H(A, Q)o__ A(F)O of G-invariant elements in Hr(A, Q). Here F--H(A, Q).
However, this invariant theory is quite different from the classical invariant
theory. First, it deals with the exterior product Ar(F) of the basic repre-
sentation space F rather than the symmetric product Sr(F) that appears in
classical theory. Second, the basic representation (p, F) is a very special
kind of representation called "rigid polymer type in a chemistry ((R), S, So)"
that is related to a combinatorics of a finite group (R), [1], [2]. As a result,
our invariant theory becomes quite different from the classical one and even
the determination of dim A’(F), the dimension of the space of invariants,
becomes difficult in general, [1], [2]. However, the asymptotic behavior of
dim A(zF) (as/-oo) can be studied. This will be the goal of the present
work. Before going further, we would like to thank Dr. David Weeks,
Mrs. Oscar Goldman and Professor Shokichi Iyanaga, M.J.A., for their
encouragements.

Let a rigid GTAS " AV be of quaternion type so that it corresponds
to a polyhedron (polymer) P with a generic fibre A,. Then the fibre product
(with g factors) r()" A ... .A--+V corresponds to the polyhedron/P and
has a generic fibre/A,-A+... +A (g terms). If the basic representation
space of the GTAS A is F--H(A, Q), then the representation space of A 7

vA is tF H(tA, Q) F(. @F. Let F X+. +X, be the decom-
position of F into irreducible pieces. In general, Xt-X is permitted for
i=/=]. However, in the present work, we will be concerned with the case
where X=C=X holds for i=/=:]. We note that the more general case of F--
/0F0 with/0 1 can be subsumed under the substitution of / by g/0 in our
calculation. We recall that [A(gX +. +/X)]-- [A(gF)] dim Ir(ttF)
e Z. This function is only additive on the representation ring of G. We have
Ar(flZl--...t-[2Z)’’OEa,=r,i,jAai,(Xt), where l_i_k and l_]_g.

In the preceding direct sum, those summands with a,_l for all i, ] are
said to be of the first kind while those with at least one a.)1 are said to
be of the second kind. Thus,
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dim Ar([.tF)a--- [first kind term] + [second kind term].
The equality Hcp.P)(A)fqHr(A, Q)--At(F) is valid i the polyhedron (poly-
mer) P belongs to some rigid GTAS and in this case .//r(F)V 0 holds for
odd r. If there is no GTAS ssociated to P, then the equality becomes
meaningless (even though a polymer representation or P still exists)and
(F) might be nonzero. Later, we will discuss the general case.

In the present work, we will refer to some calculations made in [2].
There we used homology. Here we use cohomology. They are isomorphic
by using the self duality of F. We will review the notation used in our
earlier works. Before we begin, we note that large prt o the present
work makes sense without the bckground involving GTAS. As a result,
we often work in the general setting and there will be abuses of notation.
The reader should refer to the earlier works [1], [2] or more details. Spe-
cifically, some of the symbols have multiple interpretations. The precise
meaning is usually clear from context. Every so often, reminders will be
inserted to clariy the usage.

Let P be a polyhedron (or polymer). This means that P is viewed both
as a ormal finite sum X +... +X as well as a triple (S, F, V). We recall
that S is the finite set of vertices and F is the finite set of "top dimensional"
aces of P. Here V: F2 is the vertex mp, and F={X, ..., X}, so that
k=F. We note that X=X is permissible 2or i] so that the aces of P
may have multiplicities greater than 1. However, we can artificially intro-
duce distinct symbols so that XX holds for i]. As a result, X may e
replaced by i when there is little chance of conusion. By an abuse o nota-
tion, the "open star map" will be denoted by V-:S2r. Thus, for the
face i, V(i) can be identified with the subset X= V(i) of S consisting of the
vertices of V(i); for the vertex a, V-(a) is ten the set of all aces X with

eX. We set re=IS I, =IX.I=[V(X), and f()V-(). The km
incidence matrix A =(a(., i)) is defined by a(., i)= 1 or 0 according to i e
or i e . Obviously, we have,

1. Asymptotics of the two sums. Definition of a. Let us consider
the following typil term of the first kind,

Aa’,(X,) 1<i< k, 1<]<.
Put m,=,a,, and put X’=, A’,(X,). Let Z+ denote the set of
all nonnegative integers. For each vector (m, ..., m) e Z, there are then

such terms. Thus the dimension of the space of invariants of terms of the
first type is

[@ (]+0(-), where >>.
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Here the product (R) extends over ll the vertices and for each vertex e S,
we have

m(o)=m+... +mof,,, V-’(o) {X, ..., Xf,},
see [2] for more details. We recall from [2] that

[] [] I] c(m()),
where

c(0)=1, c(n)=O for n odd, and c(2t)=t-.( 251/ for

As a result, we have
[first kind term] aZ +0( 9, Z>> r,

where
1 s m>0.ar c(mF())

+"" = mi !. .m
For the second sum, the determination of its exact value is difficult, but
rough estimation of its value is easy. In act, the second sum is O(Z-) gor

z>>r. From this we obtain
dim Ar(#F)=azEO(z-), >>r, a as bove.

2. Some combinatorial notation. For lter purposes, we need some
notation to deal with our combinatorics. A subpolyhedron Q=X,E... EX
of P=XiE... EX is cMled stable picture i each vertex of Q belongs to
n even number of ces of Q. A number of such examples can be found
in [2]. The set of all stable pictures in P will be denoted by H=H(P) and
its crdinMity will be denoted by n(P)=H]. For a stable picture Q o P,
the number of fces in Q will be denoted be (Q).

Example (see [2]). For the octhedron P, n(P): 16, # (P)=8,
#(u’)=4, #(u?)=#(u?)=4, ii, 6, and ()=0.

Clearly, is Mwys stable pcture nd #()=0. As a result n(P)>O
holds for ny polyhedron P.

3. Entropy. The value of a is called th to$al entropy. It is the
aim of the present work to estimate this quantity.

The vector =(m, ..., m)e Z is viewed as Z+-vMued function de-

fined on the set F of faces of P nd is cMled distribution. The weigh$]
of is defined to be the sum m... Em. The individual term

i

where
m()=m+.. +m,, nd V-i() ={X,, ...,

is cMled a local entropy a the distribution m and is denoted by a().
A distribution m Is called admissible if nd only if m() is even for

ech e S. The set of all admissible distributions will be denoted by A.
Thus, AcZ. For stable picture Q, distribution m=(m,...,m) is
lled Q-admissible if nd only if, m is odd when X e Q and m is even

when X Q. For example, m is C-admissible if and only if all the m’s
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are even. The set of all Q-admissible distributions is denoted by A(Q). It
is then easy to see that A--]__[o,e A(Q) (disjoint union with Q ranging over
all the stable pictures including ). For a stable picture Q, we will define
sequence {a} by the 2ormula

lgbQr--eA(Q),li=r (-), where a() is defined above.
Evidently, we have

Theorem. at----- Qe- arQ"
If m is not admissible, a()--O and we can ignore it. Otherwise, a()

is positive and is a product involving actorials. Thus, we can extend it (as
a function of ) to a real analytic unction of 2 defined on R+ by using F-
functions. Let this extension be denoted by f(2). Namely, (1) f(2) is real
analytic on R+ and (2) f(m)--a(-) if a():/=0. To be precise, we have

2F(xF()) 1

where
x(,) x. +. + x.,., and

The following result is then clear.
Proposition. ar=ea,l-_ f(m).

a stable picture.

v-’(,) {xo,, ..., xo,,o,}.

aQr--eA(Q),l,=r f(m), where Q is

It is not easy to compute the values of a for even r_0. To do so would
require repeated computations of

17o c(m(")) I-[, (m !)-’
and then to sum up the results. In special eases, values of ar were obtained
by computer calculation using Basic on a PC. To obtain results for big r
and various P, we would need a much bigger computer and a more sophisti-
cated program language.

4. Statement of the main result. We end the present note with a
statement of our main result.

Main theorem. Let M=li2’ and let--(ol,...,o) with 1--2.
M-1, l<i<k. Let Q be any stable picture. Then a$ is asymptotically
equal to

2-.4. (2)-/,. [] Y(a)-/. M

The details of the proof together with some corollaries will be given in the
next instMlment, see [3].
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