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1. Introduction. This paper aims at studying several functorial
properties of second analytic wave front sets of hyperfunctions or micro-
functions. As an application we show that two notions of second microlocal
singularities, second singular spectrum introduced by M. Kashiwara and
second analytic wave front sets due to J. Sj/strand, are equivalent. To
this aim we utilize the partial Radon transformation. We follow the nota-
tion prepared in Okada-Tose [11].

2. Second singular spectrum. Let M be, as in 2 of [11], an open
subset in R, and X be a complex neighborhood of M in C. We take coor-
dinates of T*X(’V’- 1 T’M) [resp. T’M] as (x; /- l.dx) [resp. (x; .dx)]
with --(1, ", n). We identify /- 1 T*M with T*M by the correspondence
(2.1) (x v/- 1 . dx)< >(x . dx).
T*X is endowed with the sheaf C of microfunctions, which enjoys an exact
sequence

0 > >_ >’,(C I,,\) >0.

Here denotes the shea of real analytic functions on M,

_
that of

hyperfunctions, and the restriction to *X (.-T*X\M)o the natural
projection" T*X--->M. Moreover there exists cnonical sheaf morphsm

Sp" zr;. >C (z T*X ;M),
by which we set for u e

SS (u) ’-supp (Sp(u)).
Then SS (u) is called the singular spectrum of u (refer to [13]). We remark
that for u e _, we have

SS (u) WF (u)
through the correspondence (2.1). This is a classical fact dating back to
J.M. Bony [2], K. Kataoka [7]. Refer also to J. SjSstrand [12].

Now let V denote an involutive submanifold in T*X"
V= {(x ,/- 1 . dx) 1 =0}.

We set
N= {z e X; Im z" =0}, V=TX\N.

We take coordinates of l as (z’, x" ;/-1". dx"), and we have in T*X the
injection

v= %*x ,x >#.
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V is endowed with the sheaf 5" of microfunctions with holomorphic param-
eters z’ (cf. [13; Chap. 3]). M. Kashiwara [4] (c. J.M. Bony [1]) con-
structed the sheaf C of 2-microfunctions on T*V from the sheaf 5’ by the
same procedure as M. Sato et al. [13] constructed the sheaf from
Explicitly, the sheaf is given by
(2.2) C /(C) [d]
where/ denotes the functor of Sato’s microlocalization along V (refer to
[6]). We also set
(2.3) . C1 RF(C)[d].
Remark that the complexes in (2.2) and (2.3) are concentrated in degree 0.
Moreover there exist the exact sequences

"(2.4) 0 > >_: ,,(C ]/,) >0,
(2.5) 0 >C],
Here we set --C],, and " P*P-+V. There also exists a canonical
morphism

Sp2" _2 >C ( T*V >Y),
by which we define for u e

_
(in particular for u e L’ I,) its second singular

spectrum along V by
SS (u) ’-supp (Sp(u)).

We give several remarks" i) We identify TT*M with T*V through the
correspondence
(2.6) (x; ".dx" x’*.3/’)-.-->(x /- l’.dx" /- lx’* .dx’).
This is intrinsic if we admit (2.1). ii) For -=(; /-l’.dx") and u e
L’l,., u e, if and only if e 2-singsupp, (u) in the sense of Definition
2.1 of [11]. This is essentially shown in J.M. Bony [3]. iii) Refer to
Kashiwara-Laurent [5] for more details about

3. unctorial properties of second analytic wave front sets. To sim-
plify the notation, we set for u e _(M)

WF,. (u)-WF, (u) j (WF (u) V)
in T’*M, and

WF (u) WF (u) J supp (u).
By several variants of Theorem 3.4 in Okada-Tose [11], we can develop

the study of functorial properties of second analytic wave front sets. We
follow the notation prepared in 2 of [11].

3.1. Tensor product, Let M be an open subset of R with coordi-
nates t--(t,..., t). We take coordinates of T*M as (t;v.dt)with e R.
Moreover we define an involutive submanifold V in *(M M) by

V={(x, ; .dx+r.dt); =0, r=0},
and we take also a system of coordinates of TT*(MX M) as (x, t; ’. dx"
x’*.O/O’+t*.O/r) with t*=(t*,..., t*). Here we give

Theorem 3.1. Let u(x) (M) and v(t) e .(M). Then
WF2a,,, (u(x).v(t))C{(x, t; " x’*, t*) ’*(MxM) ;(x "; x’*)

t*. dt) e WF(v(t))}.e WF, (u(x)) (t;
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3.2. Restriction. We follow the notation prepared in 2 of [11]. We
set

M2={x e M; xl=O}
and take coordinates of M (resp. T*M) as (t, x") (resp. (t, x"; r.dt+’.dx"))
with t=(x, ., x) (resp. r=(, .., )). We define an involutive submani-
old V. by

V2= {(t, x"; r, ") e ’*M r=0}.
In this situation, we give

Theorem 3.2. Let u(x) be a hyperfunction defined in M. We assume
(3.1) WFa (u) r {(2; _+ dxl) e T’M}-- ,
(3.2) (0, , 2"; 1, 0, ..., 0, ") e WFa (u)
for any e R\{0}. Moreover we assume that
(3.3) (0, , 2"; "; +__/) e WF,v (u).
Then

{(, "; "; t*.l) x* such that (0, , "; "; (Xl*, t*)) e WF, (u(x))}.
3.3. Integration along fibers. Let M be R, and V be as defined in

2 of [11]. We set M=Rn- endowed with the coordinates (t,x") (t=
(x, ..., x)). We define an involutive submanifold V in T*M by

V--{(t, x"; r.dt+".dx") e *M r--0).
Moreover f denotes the projection

f M- M x---->(t, x").
Then we give

Theorem 3.3. Let u(x) e 0,. We assume that the natural projection
M T*M T*M

is proper on supp (u). Then

WF, (u(x)dx)c{(t,x";"dx";t*./).
e*M x such that (x, t, x"; !,.,; (0, t*)) e WF,,(u)}.

3.4. Equivalence of two definitions of second microlocal singulari-
ties. We follow the notation prepared in 2. We define a hyperfunction
on Rn X S-

W(x’, x’*)=-- (d-l)!
(--2u/- 1)

X (l--J- lx’. x’*)---(1-- j lx’. x’*)-(x’-(x’. x’*)).
{x’ x’* + / 1 (xn--(x x’*Y)+ /-- 10}

Now we give

Theorem 3.4. Let u(x) be a microfunction defined in a neighborhood

of p0=(2; /- l".dx") e V. Then the following conditions (i), (ii), (iii) are
equivalent to one another"

(i) =(2; "; 2’*)eWF,(u),
(ii) the microfunction

v(x, x’*) [ u(2’, x")W(x’- ’, x’*)d2’
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has holomorphic parameters (x’,x’*) in a neighborhood of Pl--(,$’*;
/- 1" dx"),

(iii) =(2 4Z]" /- 12’*) e SS (u).
The equivalence between (ii) and (iii) is already shown in [9; Proposi-

tion 7.4]. We use results in 3.1- 3.3 to show that (i) and (ii) are equivalent.
Refer to Okada-Tose [10] for details.

By the above theorem, we have or u e C 17
SS (u)-WF, (u)

through the correspondence (2.6).
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