26. The Modulo 2 Homology Group of the Space of Rational Functions

By Yasuhiko KAMIYAMA

Department of Mathematics, Faculty of Science, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., March 12, 1990)

§1. Introduction. Let \hat{M}_k be the moduli space of SU(2) monopoles associated with Yang-Mills-Higgs and Bogomol'nyi equations. It is shown [1] that \hat{M}_k is homeomorphic to the space of based holomorphic maps of degree k from S^2 to S^2 .

More generally we define $F_k^*(S^2, CP^m)$ to be the space of based holomorphic maps of degree k from S^2 to CP^m .

Segal [3] studied the connection between $F_k^*(S^2, CP^m)$ and $\Omega_k^2 CP^m$. The result is as follows

Theorem 1 [3]. The inclusion

 $i: F_k^*(S^2, \mathbb{C}P^m) \longrightarrow \Omega_k^2 \mathbb{C}P^m$

is a homotopy equivalence up to dimension k(2m-1), the induced homomorphism i_* : $\pi_q(F_k^*(S^2, \mathbb{CP}^m)) \rightarrow \pi_q(\Omega_k^2\mathbb{CP}^m)$ is bijective for q < k(2m-1) and surjective for q = k(2m-1).

It is well know [2] that $\coprod_k \Omega_k^2 CP^m$ has natural loop sum and C_2 structure.

Recently Boyer and Mann [1] introduced loop sum and C_2 structure in $\coprod_k F_k^*(S^2, \mathbb{C}P^m)$ which are compatible with the inclusion *i*. Hence we can naturally define the loop sum and the Dyer-Lashof operation Q_1 in $\bigoplus_k H_*$ $(F_k^*(S^2, \mathbb{C}P^m); \mathbb{Z}_2)$.

By using these methods, Boyer and Mann produced certain elements in $H_*(F_k^*(S^2, \mathbb{C}P^m); \mathbb{Z}_2)$ some of which have degree greater than k(2m-1). (cf. Theorem 1.)

Then the following question arises naturally.

Question. Are the elements produced by the loop sum and the Dyer-Lashof operation from ι_{2m-1} (ι_{2m-1} will be defined later) the basis of $H_*(F_k^*(S^2, \mathbb{C}P^m); \mathbb{Z}_2)$?

We shall study this question. The results are as follows. We write F_k^* for $F_k^*(S^2, \mathbb{C}P^1)$.

Theorem A. The elements produced by the loop sum and the Dyer-Lashof operation from ι_1 are the basis of $H_*(F_2^*; \mathbb{Z}_2)$.

Theorem B. For $m \ge 2$, the elements produced by the loop sum and the Dyer-Lashof operation from ι_{2m-1} are the basis of $H_*(F_2^*(S^2, \mathbb{C}P^m); \mathbb{Z}_2)$.

Theorem C. For $m \ge 2$, the elements produced by the loop sum and the Dyer-Lashof operation from ι_{2m-1} are the basis of $H_*(F_3^*(S^2, \mathbb{CP}^m); \mathbb{Z}_2)$.

Theorem D. For $m \ge k+1$, the elements produced by the loop sum

and the sum and the Dyer-Lashof operation from ι_{2m-1} are the basis of H_* $(F_k^*(S^2, \mathbb{CP}^m); \mathbb{Z}_2).$

If we regard a function belonging to F_k^* as a holomorphic function $f: S^2 \rightarrow S^2$ of degree k such that $f(\infty)=1$ then F_k^* can be described in the following form.

$$F_{k}^{*} = \left\{ \frac{p(z)}{q(z)} = \frac{z^{k} + a_{1}z^{k-1} + \dots + a_{k}}{z^{k} + b_{1}z^{k-1} + \dots + b_{k}}; p(z) \text{ and } q(z) \text{ have no common root.} \right\}$$

Similarly we can assume $F_k^*(S^2, CP^m)$ as follows.

 $F_k^*(S^2, \mathbb{C}P^m) = \{[p_0(z), p_1(z), \dots, p_m(z)]; p_i(z) \text{ are monic polynomials of de$ $gree k such that there exists no <math>\alpha \in \mathbb{C}$ which satisfies $p_0(\alpha) = 0, p_1(\alpha) = 0, \dots, p_m(\alpha) = 0.\}$

Then it is clear that $F_1^*(S^2, \mathbb{C}P^m)$ is homotopically equivalent to S^{2m-1} .

Before proving our results, we review the results of [1]. As for H_* $(\Omega^2 CP^m; \mathbb{Z}_2)$, the following is well known.

Proposition 2 [2].

 $H_*(\Omega^2 CP^m; Z_2) = Z_2[\tilde{\iota}_{2m-1}, Q_{I_1}(\tilde{\iota}_{2m-1})] \otimes Z_2[Z]$

where $Q_{I_1}(\tilde{\iota}_{2m-1}) = Q_1 \cdots Q_1(\tilde{\iota}_{2m-1})$ (I_1 has length 1 and 1 is an any element of N) and $\tilde{\iota}_{2m-1}$ is the mod 2 reduction of the generator of $H_{2m-1}(\Omega_1^2 CP^m; Z) = \pi_{2m-1}$ $(\Omega_1^2 CP^m) = Z.$

Let ι_{2m-1} be the generator of $H_{2m-1}(F_1^*(S^2, \mathbb{C}P^m); \mathbb{Z}_2) = \mathbb{Z}_2$. By operating the loop sum and Q_{I_1} to ι_{2m-1} , we obtain elements in $H_*(F_k^*(S^2, \mathbb{C}P^m); \mathbb{Z}_2)$. Then by using Proposition 2, we can easily prove the following proposition.

Proposition 3. Let ξ be an element of $H_q(\Omega_k^2 \mathbb{C}P^m; \mathbb{Z}_2)$ for $q \leq k(2m-1)$, then we can construct an element ζ of $H_q(F_k^*(S^2, \mathbb{C}P^m); \mathbb{Z}_2)$ by the loop sum and the Dyer-Lashof operation from ι_{2m-1} such that $i_*\zeta = \xi$.

In §2 we shall prove Theorem A and in §3 we shall prove Theorem D in the case k=3. The proof of Theorems B, C and Theorem D in the case $k \ge 4$ are omitted.

§2. Proof of Theorem A. In the following, all cohomology group and compact support cohomology group are assumed to be modulo 2 coefficients.

We define $R: F_2^* \to C^{\times}$ as follows. Let p(z)/q(z) be an element of F_2^* and let α_1, α_2 be the roots of $p(z), \beta_1, \beta_2$ be the roots of q(z). Then R(p(z)/q(z))is defined by $\prod_{i,j} (\alpha_i - \beta_j)$. Let Y_2 be $R^{-1}(1)$. Then it is shown in [3] that $R: F_2^* \to C^{\times}$ is a fiber bundle with simply connected fiber Y_2 .

First we shall compute $H^*(Y_2)$. We define the closed subspace Y_1 of Y_2 as follows.

$$Y_1 = \left\{ \frac{p(z)}{q(z)} \in Y_2; q(z) \text{ has a multiple root.} \right\}$$

Because of the exact sequence

 $\cdots \longrightarrow H^q_c(Y_2 - Y_1) \longrightarrow H^q_c(Y_2) \longrightarrow H^q_c(Y_1) \longrightarrow H^{q+1}_c(Y_2 - Y_1) \longrightarrow \cdots$

it will be enough to compute $H_c^*(Y_2 - Y_1)$ and $H_c^*(Y_1)$. Here H_c^* denotes the compact support cohomology.

Assertion 1. Y_1 is homeomorphic to $C^2 \coprod C^2$.

Let \tilde{C}_2 be the space of ordered distinct 2-tuples in C. We think of C^{\times} as $\{(\xi_1, \xi_2) \in (C^{\times})^2; \xi_1 \xi_2 = 1\}$.

Assertion 2. $Y_2 - Y_1$ is the quotient of $C^{\times} \times \tilde{C}_2$ by a free action of the symmetric group Σ_2 .

Now by using the compact support cohomology exact sequence and the Poincaré duality, we see

$$H^q(Y_2) = \begin{cases} Z_2 & q=0, 2\\ 0 & \text{otherwise.} \end{cases}$$

By using the Serre spectral sequence of the above fiber bundle, we can prove Theorem A.

§ 3. Proof of Theorem D in the case k=3. We write X_s for $F_s^*(S^2, CP^m)$. To prove Theorem D in the case k=3, it will be enough to determine $H_c^q(X_s)$ for $q \leq 9$ by Theorem 1 and Proposition 3. We define the closed subspace X_2 of X_3 and the closed subspace X_1 of X_2 as follows.

 $X_2 = \{ [p_0(z), \dots, p_m(z)]; p_0(z) \text{ has a multiple root.} \}$

 $X_1 = \{ [p_0(z), \cdots, p_m(z)]; p_0(z) \text{ has a triple root.} \}$

Assertion 1. X_1 is homotopically equivalent to S^{2m-1} .

Assertion 2. $X_2 - X_1$ is homotopically equivalent to $(S^{2m-1})^2 \times S^4$.

By using the compact support cohomology exact sequence of the pair of spaces (X_2, X_1) , we see $H_c^q(X_2) = 0$ for $q \leq 9$.

Let \tilde{C}_3 be the space of ordered distinct 3-tuples in C.

Assertion 3. $X_3 - X_2$ is homotopically equivalent to $(S^{2m-1})^3 \times_{\Sigma_3} \tilde{C}_3$.

Assertion 4. $H^{q}((S^{2m-1})^{3} \times S_{3} \tilde{C}_{3}) = \begin{cases} Z_{2} & q = 6m - 3, \ 6m - 2 \\ 0 & q \ge 6m - 1. \end{cases}$

Assertion 4 is proved by using the Serre spectral sequence of the following fiber bundle and the fact [2] $H^*(\tilde{C}_s/\Sigma_s) = H^*(S^1)$.

$$(S^{2m-1})^3 \longrightarrow (S^{2m-1})^3 \times_{\Sigma_3} \tilde{C}_3 \longrightarrow \tilde{C}_3 / \Sigma_3.$$

Theorem D in the case k=3 can be deduced from the compact support cohomology exact sequence of the pair of spaces (X_3, X_2) .

References

- C. P. Boyer and B. M. Mann: Monopoles, non-linear σ-models, and two-fold loop spaces. Commun. Math. Phys., 115, 571-594 (1988).
- [2] F. R. Cohen, T. J. Lada, and J. P. May: The homology of iterated loop spaces. Lect. Notes in Math., vol. 533, Springer, Berlin (1976).
- [3] G. Segal: The topology of rational functions. Acta Math., 143, 39-72 (1979).

No. 3]