25. On the Fundamental Groups of Moduli Spaces of Irreducible $\mathrm{SU}(2)$-Connections over
 Closed 4-Manifolds

By Hiroshi Ohta
Department of Mathematics, Faculty of Science, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., March 12, 1990)

§ 1. Introduction and statement of result. Let M be a connected oriented closed smooth four-manifold and $P \rightarrow M$ be a principal $S U(2)$ bundle over M with $c_{2}(P)=k$. Let $E=P \times{ }_{s U(2)} C^{2}$ be the C^{2}-vector bundle associated with P by the standard representation, and $A d P=P \times_{A d} s u(2)$ be the $s u(2)$ bundle associated with P by the adjoint representation. We fix integers $p \geq 2$ and $l \geq 1$. We set
$\mathcal{A}_{k}:=\left\{A+a \mid A\right.$ is a smooth connection on $\left.P . a \in L_{l}^{p} \Omega^{1}(A d P)\right\}$
which is the L_{l}^{p}-completion space of the principal connections on P. Here L_{l}^{p} means the Sobolev space of sections whose derivatives of order $\leq l$ are bounded in L^{p}-norms, and we denote the space of $A d P$ valued smooth m forms on M by $\Omega^{m}(A d P)$. We set

$$
\mathcal{G}_{k}:=C^{0}\left(M, P \times{ }_{A d} S U(2)\right) \cap L_{i+1}^{p} \Omega^{0}(E n d E)
$$

which is the L_{l+1}^{p}-completion space of gauge group of P. We denote by \mathcal{A}_{k}^{*} the subspace of irreducible connections of \mathscr{A}_{k}. We put $\mathscr{B}_{k}=\mathcal{A}_{k} / \mathcal{G}_{k}$ and $\mathscr{B}_{k}^{*}=\mathscr{A}_{k}^{*} / \mathcal{G}_{k}$. We call \mathscr{B}_{k}^{*} the moduli space of irreducible $S U(2)$-connections on P. We note that \mathcal{G}_{k} acts on \mathcal{A}_{k}^{*} not freely.

In this note we study the fundamental group of \mathcal{B}_{k}^{*}. We shall show the following theorem.

Theorem. Let M be a closed 4-manifold as above. Suppose that M is simply connected.
(1) When the intersection form of M is of odd type, then

$$
\pi_{1}\left(\mathscr{B}_{k}^{*}\right)=1
$$

(2) When the intersection form of M is of even type, then

$$
\pi_{1}\left(\mathscr{B}_{k}^{*}\right)= \begin{cases}1 & \text { if } c_{2}(P)=k \text { is odd } \\ Z_{2} & \text { if } c_{2}(P)=k \text { is even } .\end{cases}
$$

It is well known that $\mathrm{S} . \mathrm{K}$. Donaldson investigated the topology of 4manifolds by using gauge theory (e.g. [2], [3]). In his works he studied the moduli space \mathscr{M}_{k} of anti-self dual connections on P with $c_{2}(P)=k$. Many properties of the topology of \mathscr{M}_{k} are got by the analysis of anti-self dual equation. But some properties are deduced from that of \mathscr{B}_{k}^{*}. In fact in [2] we had to show the orientability of \mathcal{M}_{1}^{*}. We can show it by using the fact that \mathscr{B}_{1}^{*} is simply connected ([2], [4]). Further in order to get more refinement invariants of 4-manifolds we shall have to argue with moduli spaces with higher instanton number k. Therefore it is fundamen-
tal that we study the topology of \mathscr{B}_{k}^{*} when we try to study the topology of 4-manifolds by dint of gauge theory.

Remark. (1) By [2] and [4] we know that $\pi_{1}\left(\mathscr{B}_{1}^{*}\right)=1$.
(2) Let \mathcal{G}_{k}^{0} be the normal subgroup of \mathcal{G}_{k} which fix the fibre $P_{x_{0}}$ over a base point x_{0} in M. Then we know the topology of the framed moduli space of connections $\widetilde{\mathcal{B}}_{k}=\mathcal{A}_{k} / \mathcal{G}_{k}^{0}$ in detail. There is a weak homotopy equivalence

$$
\widetilde{\mathscr{A}}=M a p_{p}(M, B S U(2))
$$

where $M a p_{p}$ denotes the space of based maps in the homotopy class corresponding to the bundle P (see [1], [3]). Further $\widetilde{\mathcal{B}}_{n, k}=\mathscr{A}_{n, k} / \mathcal{G}_{n, k}^{0}$ denotes the framed moduli space of connections on a principal $S U(n)$ bundle P with $c_{2}(P)=k$. Then $\widetilde{\mathcal{B}}_{n, k}$ is simply connected for $n \geq 3$ ([2; §II.4]). These results are deduced from the topology of $\mathcal{G}_{n, k}^{0}$ because $\mathcal{G}_{n, k}^{0}$ acts freely on the contractible affine space $\mathcal{A}_{n, k}$. In fact $\pi_{1}\left(\widetilde{\mathcal{B}}_{n, k}\right) \cong \pi_{0}\left(G_{n, k}^{0}\right)$. But since in our case the topology of \mathscr{B}_{k}^{*} is not simply deduced from that of gauge group, we have to do more detailed argument.
(3) A. Kono proved the following result about the full gauge group \mathcal{G}_{k} that if \mathcal{G}_{k} is homotopy equivalent to $\mathcal{G}_{k^{\prime}}$ then $k \equiv k^{\prime}(\bmod 6)$ ([5]).
§ 2. Outline of the proof. The gauge group \mathcal{G}_{k} has an ineffective Z_{2} in its action on \mathcal{A}_{6}^{*}. This Z_{2} is the centralizer of the holonomy subgroup of the irreducible connection on P and can be thought of as the center $\{ \pm 1\}$ of $S U(2)$. These elements of the center describe elements of \mathcal{G}_{k} because they are invariant under the adjoint action of $S U(2)$, which is used to define \mathcal{G}_{k}.

We set $\tilde{\mathcal{G}}_{k}=\mathcal{G}_{k} / Z_{2}$. Then we have a principal fibration

$$
\tilde{\mathcal{G}}_{k} \longrightarrow \mathfrak{A}_{k}^{*} \longrightarrow \mathscr{B}_{k}^{*}
$$

By the homotopy exact sequence of this fibration and the fact that \mathcal{A}_{*}^{*} has the weak homotopy type of a point, we have

$$
\begin{equation*}
\pi_{1}\left(\mathscr{D}_{k}^{*}\right) \cong \pi_{0}\left(\tilde{\mathscr{G}}_{k}\right) \tag{1}
\end{equation*}
$$

Thus we compute $\pi_{0}\left(\tilde{\mathscr{G}}_{k}\right)$.
First we compute $\pi_{0}\left(\mathcal{G}_{k}\right)$. According to [4] we have

$$
\pi_{0}\left(\mathcal{G}_{k}\right)=[M, S U(2)]=\left[M, S^{3}\right]
$$

where $[M, S U(2)]$ means the homotopy equivalence class of continuous maps from M to $S U(2)$. Moreover due to Steenrod's classification theorem (for example, see [6]) implies that

$$
\left[M, S^{3}\right] \cong H^{4}\left(M, Z_{2}\right) / \text { Image } S q^{2}
$$

where $\mathrm{S} q^{2}: H^{2}\left(M, \boldsymbol{Z}_{2}\right) \rightarrow H^{4}(M, \boldsymbol{Z}) \cong \boldsymbol{Z} \rightarrow \boldsymbol{Z}_{2}$ is Steenrod's squaring operator reduced to $\bmod 2$, which is given by $S q^{2}(\alpha)=\alpha \cup \alpha(\bmod 2)$ for $\alpha \in H^{2}(M, Z)$. Therefore we have

$$
\pi_{0}\left(\mathcal{G}_{k}\right) \cong \begin{cases}1 & \text { if the intersection form of } M \text { is of odd type. } \\ Z_{2} & \text { if the intersection form of } M \text { is of even type } .\end{cases}
$$

On the other hand we have the principal fibration

$$
\boldsymbol{Z}_{2} \xrightarrow{j} \mathcal{G}_{k} \longrightarrow \tilde{\mathcal{G}}_{k} .
$$

We obtain the exact sequence of pointed sets
(3)

$$
\longrightarrow Z_{2} \xrightarrow{j_{*}} \pi_{0}\left(\mathcal{G}_{k}\right) \longrightarrow \pi_{0}\left(\tilde{G}_{k}\right) \longrightarrow 1
$$

where $\boldsymbol{Z}_{2} \cong \pi_{0}\left(\boldsymbol{Z}_{2}\right)$. When the intersection form of M is of odd type, (1), (2) and (3) implies the assertion (1) of Theorem. When it is of even type, we have to study the map j_{*} in (3). We shall see the image of a non trivial element -1 of Z_{2} under the map j_{*}.

Given any degree one map σ from M to S^{4}, there is a pullback σ^{*} : [S^{4}, $\left.S^{3}\right] \cong Z_{2} \rightarrow\left[M, S^{3}\right]$. Then $\left[M, S^{3}\right]=$ Image σ^{*}. Moreover the inclusion $i: \mathcal{G}_{k}^{0}$ $\longrightarrow \mathcal{G}_{k}$ induces an isomorphism

$$
i_{*}: \pi_{0}\left(\mathcal{G}_{k}^{0}\right) \xrightarrow{\sim} \pi_{0}\left(\mathcal{G}_{k}\right)
$$

by Lemma 5.10 in [4]. Thus we have the following isomorphisms

$$
\begin{equation*}
Z_{2} \cong \pi_{0}\left(\mathcal{G}_{k}^{0}\right) \xrightarrow[i_{*}]{\sim} \pi_{0}\left(\mathcal{G}_{k}\right) \cong\left[M, S^{3}\right]=\text { Image } \sigma^{*}\left[S^{4}, S^{3}\right] \tag{4}
\end{equation*}
$$

Now there is an open cover $M=M^{+} \cup M^{-}$with $M^{+} \simeq B^{4}$ (the 4-ball), $M^{+} \cap M^{-} \simeq S^{3} \times(0,1)$ and a clutching map $h: M^{+} \cap M^{-} \rightarrow S U(2)$ so that the $S U(2)$-bundle P is

$$
P=M^{+} \times S U(2) \sqcup M^{-} \times S U(2) / \sim
$$

where $\left(m^{+}, g\right) \sim\left(m^{-}, g^{\prime}\right)$ if and only if $m^{+}=m^{-}$and $g^{\prime}=h\left(m^{+}\right) g$. By that $c_{2}(P)=k$, the map $S^{3} \ni x \mapsto h(x, t) \in S U(2)$ has degree k for any $t \in(0,1)$. Then since \mathcal{G}_{k}^{0} is considered as

$$
\mathcal{G}_{k}^{0}=\left\{s \in \mathcal{G}_{k}|s| B^{4} \equiv 1\right\} .
$$

$s \in \mathcal{G}_{k}^{0}$ can be described as the pair of maps

$$
s^{+}: M^{+} \longrightarrow S U(2), \quad s^{-}: M^{-} \longrightarrow S U(2)
$$

with $s^{-}(x, t)=x^{k} s^{+}(x, t) x^{-k}$ on $M^{+} \cap M^{-}$and $s \mid M^{+} \equiv 1$. Here we consider S^{3} as the unit sphere in quaternion plane \boldsymbol{H}.

Let $\lambda(t)=e^{i t \pi}(0 \leq t \leq 1)$ be a half circle from $\lambda(0)=1$ to $\lambda(1)=-1$ in $S U(2)$ which is also considered as the unit sphere in \boldsymbol{H}. We put

$$
\begin{aligned}
& s^{+}= \begin{cases}\lambda(t) & \text { on } M^{+} \cap M^{-}=S^{3} \times(0,1) \\
1 & \text { on } M^{+}-M^{-}=B^{4}\end{cases} \\
& s^{-}= \begin{cases}x^{k} \lambda(t) x^{-k} & \text { on } M^{+} \cap M^{-}=S^{3} \times(0,1) \\
-1 & \text { on } M^{-}-M^{+} .\end{cases}
\end{aligned}
$$

Then this pair of maps defines an element s of \mathcal{G}_{k}^{0} which is contained in the connected component of -1 in \mathcal{G}_{k}. Since $j_{*}(-1)$ is the connected component of -1 in \mathcal{G}_{k}, we have that $j_{*}(-1)=[s] \in \pi_{0}\left(\mathcal{G}_{k}^{0}\right) \cong \pi_{0}\left(\mathcal{G}_{k}\right)$. Under the isomorphisms in (4) we shall consider $[s]$ as an element of $\sigma^{*}\left[S^{4}, S^{3}\right]$. We define a degree one map σ from M to S^{4} to be

$$
\sigma= \begin{cases}\text { north pole } & \text { on } M^{+}-M^{-} \\ \text {south pole } & \text { on } M^{-}-M^{+} \\ \text {projection } & \text { on } M^{+} \cap M^{-}\end{cases}
$$

Here the projection means the natural projection from $M^{+} \cap M^{-}=S^{3} \times[0,1]$ to $S^{3} \times[0,1] / \sim=\Sigma S^{3}=S^{4}$ which is considered as the one-suspension of S^{3}. We define a map u from S^{4} to S^{3} to be

$$
u: S^{4}=\Sigma S^{3}=S^{3} \times[0,1] / \sim \ni(x, t) \longmapsto x^{k} e^{i t \pi} x^{-k} \in S^{3}
$$

Then it is easy to see that $[s] \in \pi_{0}\left(\mathcal{G}_{k}\right)$ corresponds to $\sigma^{*}[u]=[u \circ \sigma] \in$ $\left[M, S^{3}\right]$. Thus we obtain the following Lemma 1.

Lemma 1. $j_{*}(-1)=[s]=\sigma^{*}[u]$.
We note that the generator of $\left[S^{4}, S^{3}\right] \cong Z_{2}$ is the one-suspension ΣH of the Hopf map H from S^{3} to S^{2} by the suspension theorem and the fact that H generates $\pi_{3}\left(S^{2}\right) \cong Z_{2}$. Now we denote by H_{k} the k-twisted Hopf map

$$
H_{k}: S^{3} \ni x \longmapsto\left[x^{k}\right] \in S^{2}=S^{3} / S^{1}
$$

and we denote its one-suspension by ΣH_{k}. Then we can show the following lemmas.

Lemma 2. $[u]=\left[\Sigma H_{k}\right]$.
Lemma 3. $\left[\Sigma H_{k}\right]=k[\Sigma H]$.
To show Lemma 2 we construct a homeomorphism θ of S^{3} by $\theta: S^{3}=\Sigma S^{2}=S^{3} / S^{1} \times[0,1] / \sim \ni([a], t) \longmapsto a e^{1 t \pi} a^{-1} \in S^{3}$.
It is easy to see that θ is well defined. Then the following diagram is commutative.

To show Lemma 3 we define the map μ_{k} from S^{4} to S^{4} by

$$
\mu_{k}: S^{4}=S^{3} \times[0,1] / \sim \ni(x, t) \longmapsto\left(x^{k}, t\right) \in S^{4} .
$$

Then we can show that the degree of μ_{k} is k and that the following diagram is commutative.

Thus from Lemma 1, Lemma 2 and Lemma 3 we obtain

$$
j_{*}(-1)=[s]=\sigma^{*}[u]=k \sigma^{*}[\Sigma H] \in \pi_{0}\left(\mathcal{G}_{k}\right) \cong Z_{2} .
$$

Hence when k is even, then j_{*} is 0 -map. When k is odd, then j_{*} is surjective. So we conclude the assertion (2) of Theorem from (3).

Acknowledgment. The author wishes to thank Professor A. Hattori for helpful advice and encouragement.

References

[1] M. F. Atiyah and R. Bott: The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London, ser. A, 308, 523-615 (1982).
[2] S. K. Donaldson: An application of gauge theory to four dimensional topology. J. Diff. Geom., 18, 279-315 (1983).
[3] --: Connections, cohomology and the intersection forms of 4-manifolds. ibid., 24, 275-341 (1986).
[4] D. S. Freed and K. K. Uhlenbeck: Instantons and Four-manifolds. M. S. R. I. Publications, Springer, New York (1984).
[5] A. Kono: The homotopy types of gauge groups. Symposium in Kinosaki, Moduli Spaces and 3, 4-manifolds, pp. 78-85 (1987) (in Japanese).
[6] E. Spanier: Algebraic Topology. McGraw Hill Inc. (1966).

