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1. Introduction. Discrete cubic splines which interpolate given func-
tional values at one point lying in each mesh interval of a uniform mesh
have been studied in [2]. The case in which these points of interpolation
coincide with the mesh points of a nonuniform mesh was studied earlier by
Lyche [4], [5]. For further results in this direction reference may be made
to Dikshit and Rana [3]. In order to obtain the sharp convergence proper-
ties, we study in the present paper the problem of one point interpolation
by discrete splines when the interpolatory points are not necessarily equi-
spaced. The results, obtained in this paper include in particular some
earlier results due to Lyche [5] or uniform mesh, Dikshit and Powar [2]
and Chatterjee and Dikshit [1].

2. Existence and uniqueness. Let P a-- x0xl. xn b denote
a partition of [a, b] with equidistant mesh points so that p=x,--x,_ for all
i. For a given h0, suppose a real unction s(x, h) defined over [a, b] and
its restriction on [x,_l, x,] is a polynomial s, o degree 3 or less or i--1, 2,
.., n. Then s(x, h) defines a discrete cubic spline if

(2.1) (s.+--s)(x+]h)--O, ]-- -1, O, 1 i=1, 2, ..., n-1.
For an equivalent definition of a discrete cubic spline we introduce the
difference operator

D)f(x) f(x) Dlf(x) (f(x- h) f(x- h)) 2h
Df(x) =.(f(x+ h) 2f(x)+f(x h)) / h2.

We also use basic polynomials x( given by
x =xj, ]=0, 1, 2; x3 =x(x2-h2)

and observe that the condition (2.1) has the following equivalent form
(2.2) DIJ)s(x, h)----DiJs/(x, h), ]--0, 1, 2; i--1, 2, ..., n-1.
The class of all discrete cubic splines on P is denotec[ by D(3, P, h) whereas
D(3, P, h) denotes the class of all b--a periodic discrete cubic splines of
D(3, P, h).

We suppose that (0)7__ is a real periodic sequence with period n so
that ---/, i=1,2,.... Considering the points y--x_-Op, 0__1,
i-- 1, 2, ., n, we propose the following.

Problem 1. Given h0, for what restrictions on () does there exist
a unique spline s(x, h) e D(3, P, h) satisfying the interpolatory condition
(2.3) s(y, h)=f(y), i--1, 2, ..., n,
where (f(y)} is a given sequence of functional values ?
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For any function g of 0,, O+l and 0+ for all i, we write or convenience
y for the function obtained from g by interchanging 0,/ with 0*+--1-0,/
and 0 with 0*+.

Since s(x, h) e D(3, P, h), therefore or the interval [x_, x], we may
write
(2.4) 6ps(x, h)--(x--x)3M_,-b(x--x_l)3M+6p(x--y)c-k6pd
where M--M(h)=Ds(x, h) and c, d are appropriate constants. We are
now set to answer the Problem 1 in the ollowing"

Theorem 1. Suppose O(hp. Then there exists a unique periodic
spline s(x, h) in the class D1(3, P, h) satisfying the interpolatory condition
(2.3), if either (i) 0_0_1/3 or (ii) 2/3_0_1 for all i.

Remark 2.1. The case in which O=0 for all i, our Theorem 1 corre-
spond to a result proved in Lyche [5] or a uniform mesh. If we assume
that 0 is constant or all i we deduce rom Theorem 1 the result contained
in Dikshit and Powar [2]. The later result with h-+0 gives a result due to
Meir and Sharma [6]. Further Theorem 1 with h-+0 gives the result
proved in Chatterjee and Dikshit [1].

Proof of Theorem 1. Using s e D(3, P, h) we get
(2.5) Ac--pM Ad,-p(cO*
where A is the usual foward difference operator. In view of the interpola-
tory condition (2.3), it ollows rom (2.4) that
(2.6) 6f(y) 0" (O* p h2)M_ -k O,(ep-h)M,+6d.
Writing b---O*-bO/ or all i and combining (2.5)-(2.6), we have
(2.7) M_-b TM-bTM+-bRM+--6F
where R bO/20/.-h) Ft p(bAf(y/l) b/iAf(y))

T bO/(3 0./2)p2-k0*(((1 0

+
In order to prove Theorem 1, we shall show that the system of equations
(2.7) has a unique set o solutions. It is easily seen that for h_p and 0_<:
0_1, T and Tt are nonnegative. Also we notice that

Writing J(O) 1-- --30/, we see that in the coefficient matrix o
(2.7) the excess of the positive value of T over the sum of the positive
values of T, R and R is not less than

(0, h) b +((J(0) -k 20+)p-20+h) q- b(J(O+)p -b 2(O*+--05-t- 2)h).
Since 1-30-20 is a nonincreasing function of 0 or 0_0_1/3, we have
1--30-b20_20/27 for 11 i. Again using the hypothesis (i) of Theorem 1,
we observe that J(0)_ 11/27 and b_2/3 or all i. Thus under the case (i)
of Theorem 1 with the hypothesis that hp, it follows that t(0, h)0. In
the other case in which 2/3_01, we see that the excess o the positive
value og T over the sum o the positive values of R, R and in (2.7)is
not less than (0, h), which is o course positive. Thus, the coefficient ma-
trix of the system of equations (2.7) is invertible. This completes the proof
of Theorem 1.
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3. Norm of differences between splines. In this section, we shall
compare the discrete periodic cubic spline interpolants of Theorem 1 for
h=u,v>O. For convenience, we write,
(3.1) (1 t(h)) max {(0, h), (0h)}
where t(Oo h) is the same as defined in section 2 and (0, h) is obtained
from t(0, h).

Setting M,(u, v)=M,(u)--M,(v) and M* (u, v)=uM(u)--vM(v), we
write the single column matrices (M(u, v)) or (M*(u, v)) by M(u, ) or
(M*(u, v)). F denotes the single column matrix (F). We shall first prove
the following preliminary results.

Lemma 3.1. Le s(x, h) be $he unique discrete .periodic cubic spline
in$erpolan$ of f under $he assumptions of Theorem 1. Then, we have
(3.2)
and
(a.a) l]M*(u,
where t(h) for h-u, v is given by (3.1) and K=l+4vt(v).

Proof of Lemma 3.1. Let us write the equations (2.7) as
(3.4) A(h)M(h)=6F
where A(h) is the coefficient matrix and M(h)---(M(h)). It follows directly
from the equation (3.4) that
(3.5) A(u)M(u, v) (A(v) --A(u))M(v).
However, as already shown in the proo o Theorem 1, A(h) is invertible
and its row-max norm, that is
(3.6)
It may also be seen easily that
(3.7) i(v)ii <_6t(v)
and
(3.8)
Thus using the bounds obtained in (3.6)-(3.8), we get (3.2) rom (3.5).
Similarly starting with the equation (3.4) and following closely the forego-
ing proof, we prove (3.3). We are now set to prove the following.

Theorem 2. Suppose s(x, h) is the unique discrete periodic cubic spline
interpolant of f under the assumptions of Theorem 1. Then for h=u, v>O
(3.9) s(x, u)-s(x,
where K is some positive function depending on p and v.

Proof of Theorem 2. Evaluating d/--d rom the equation (2.6) and
substituting it in (2.5), we determine c and d. Thus, using these of c
and d in (2.4), we obtain the following representation for the discrete
cubic spline interpolant of f for x e [x_, x]

6ps(x, h)=((x--x) () +R(x--y--pb) / bb/)M_+((x--x_)1
(pR_/ b_)+(x--y)((R_/ b_.) (R, + / b ,+) --6pO +) / b)M

--((x--
Thus, setting x--x_=pt with 0gt_<l, we observe that
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6b(s(x, u)--s(x, v))=(O--t)[(((1--t)+O*+t* (l--t))b-0*)pM_(u, v)

+ ((6t/+0/--0) b(t + +t0))pM(u, v)+ /pM/(u, v)
,M*_l(u, v)+2t 1M* (u, v) M* (u, v)]+1 i+1

Thus,
6bIs(x, u)-s(x, v)]_p2(2M_(u, v)+4M,(u, v)+M/(u, v))

+M*_(u, v)+2M* (u, v)+M*/(u, v).
Observing that b_2/3, we have
(3.10) 4 [Is(x, u)--s(x, v)l]_7p2lli(u,

Combining (3.10) with the result o Lemma 3.1, we complete the proof
of Theorem 2.

4. Discrete error bounds. For a given h0, we define a discrete
interval

[a, b]a={a+]h ]-0, 1, ..., N}
and assume that equidistant mesh points x, e [a, b]a, i--0, 1, ..., n. For a
function g and three distinct points x, x, x in its domain the first and
second divided differences are defined by

[x, x]g--{g(xl)--g(x)}/(x--x) and
[x, x., x]g={[x, x.]g--[x, x]g}/(x--x) respectively.

For convenience, we write D)g-g and w(g, p) or the modulus of conti-
nuity of g. The discrete norm o a unction g over the interval [a, b]a is
defined by

gll’-- max g(x)
e [a,

Without assuming any smoothness condition on f, we shall obtain in the
following the bounds for the function e(x)---f(x)--s(x, h) over the discrete
interval [a, b].

Theorem 3. Let s(x, h) be the unique discrete periodic cubic spline in-
terpolant of f Then over the discrete interval [a, b]
(4.1) e{J} ll’--P2-JJ(])K(h)w(f}, P), ]=0, 1, 2
where K(h) is a positive function of h given by (4.9) and J(O)----1/8, J(1)=
1/2 and J(2) 1.

In order to prove Theorem 3, we shall need the ollowing results due to
Lyche ([4] Lemma 5.3 and Corollary 5.2 respectively).

q be given sequence of non-Lemma 4.1. Let a_ (aj} and
negative real numbers such that a=

__
q. Then for any real valued

function f defined on a discrete interval [a, ], we have

aj[x0, x, x2]f-- q[Yjo, Y, Y2]f _w(f, I-a-2hl) q/2
=1 =1

where all the points x,, p, e [, ] for relevant values of i, ].
Lemma 4.2. Let c, d be given real numbers such that d=c+rh for

some positive integer r and for the operators L and R a given function
g: [c-h, d+h]-+R be such that

p’(Lg)(x)=(x--c)g(d)+(d--x)g(c) (Rg)(x)-- g(x)--(Lg)(x)
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where p’=d-c.
[c, d], we have
(4.2)
(4.3)
(4.4)

Proof of Theorem 3.

Then considering the norm over the discrete interval

Rg [1’ <-- w(g, p)

(Rg)() I’ (P 12)II
Since all the mesh points x e [a, b], we may

take for any fixed i, c--x_, d=x, in Lemma 4.2. Now taking g--e, we
see that Re --Rf. Also it is clear rom the definition of Lg that over the
discrete interval [x_- h, x+.h]
(4.5)

Now since e( =Re +Le(, we see from (4.5) that over the discrete interval
[x_--h, x+h]
(4.6)
From (3.4), we obtain the system of equations for e as follows
(4.7) A(h)(eO=A(h)(f)--6(F)=(L3.
However, the i-th row of the single lumn matrix (L3 may be written as

a[xo, x,, x]f-- q[Yo, Y, Y]f
where a=2b+Op, a=2T, a=2T, a=2bO+p,

q=6pbb(b + b+),

and (y}(x++(k--1)h} or k=0,1,2.
and therefore, applying Lemma 4.1 along with theClearly

fact b4/3, for all i, we have
(4.8) [L] g(16(8p+h)/3)w(f, p).
Now using the equations (3.6), (4.2), (4.5)-(4.8), we get
(4.9) e()] K(h)w(f(, p)
where K(h) [1 + 16t(h)(Sp +h) 3].

In order to prove the remaining part of Theorem 3, we take c=y, d=
y+ in Lemma 4.2 and i g =e then Re=e, so that by (4.3), we have
(4.10) e ’= ]Re[’(p/8)[]e
which proves (4.1) for ]=0. Similarly, we can prove (4.1) or ]=1 by
using (4.4). This completes the proof o Theorem 3.
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