21. Nonlinear Singular First Order Partial Differential Equations of Briot-Bouquet Type

By Raymond GÉRARD*) and Hidetoshi TAHARA**)

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1990)

In this paper we will present a generalization of the Briot-Bouquet ordinary differential equation to partial differential equations.

§1. Briot-Bouquet equation. First let us recall the theory of nonlinear ordinary differential equations of the form

(1.1)
$$t\frac{du}{dt} = f(t, u), \quad f(0, 0) = 0$$

which was first studied by Briot-Bouquet [1]. Nowadays it is called the Briot-Bouquet equation and the structure of solutions of (1.1) near the origin of C_t is well-known (see Hille [3], Hukuhara-Kimura-Matuda [4], Kimura [5], Gérard [2] etc.). In particular, when

$$\rho = \frac{\partial f}{\partial u} (0, 0)$$

is in a generic position, we know the following:

Theorem 1. Assume that f(t, u) is a holomorphic function defined near the origin of $C_t \times C_u$. Then we have:

(1) (Holomorphic solutions). If $\rho \in N^*(=\{1, 2, 3, \dots\})$, the equation (1.1) has a unique solution $u_0(t)$ holomorphic near the origin of C_t satisfying $u_0(0)=0$.

(2) (Singular solutions). If $\rho \in N^* \cup \{a \in \mathbb{R}; a \leq 0\}$, the general solution u(t) of (1.1) near the origin of C_t is given by

(1.2)
$$u(t) = ct^{\rho} + a_{1,0}t + \sum_{i+j\geq 2} a_{i,j}t^{i}(ct^{\rho})^{j},$$

where $c \in C$ is arbitrary, the coefficients $a_{i,j} \in C$ are uniquely determined by the equation (1.1), and the series

$$w + a_{1,0}t + \sum_{i+j\geq 2}a_{i,j}t^iw^j$$

is a convergent power series in $\{t, w\}$. The holomorphic solution $u_0(t)$ in (1) is given by the case c=0.

§ 2. Generalization of (1.1) to partial differential equations. Let us consider

(2.1)
$$t\frac{\partial u}{\partial t} = F\left(t, x, u, \frac{\partial u}{\partial x}\right)$$

where $(t, x) \in C_t \times C_x^n$, $x = (x_1, \dots, x_n)$, $\frac{\partial u}{\partial x} = \left(\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}\right)$ and F(t, x, u, v)

with $v = (v_1, \dots, v_n)$ is a function defined in a polydisk Δ centered at the

^{*)} Institut de Recherche Mathématique Alsacien, Université Louis Pasteur.

^{**&#}x27; Department of Mathematics, Sophia University.

origin of $C_t \times C_x^n \times C_u \times C_v^n$. Put $\Delta_0 = \Delta \cap \{t=0, u=0 \text{ and } v=0\}$. Assume:

- (A₁) F(t, x, u, v) is holomorphic in Δ ,
- (A₂) F(0, x, 0, 0) = 0 in Δ_0 ,

$$(\mathbf{A}_{\mathfrak{z}}) \quad \frac{\partial F'}{\partial v}(0, x, 0, 0) = 0 \quad \text{in } \mathcal{A}_{\mathfrak{z}} \text{ for } i = 1, \cdots, n.$$

Then we will propose here the following definition.

Definition. If (2.1) satisfies (A_1) , (A_2) and (A_3) , we say that (2.1) is a partial differential equation of Briot-Bouquet type with respect to t.

The reasonability of this definition will be seen in Theorem 2 given in
$$\S 3$$
.

- § 3. Main result for (2.1). Denote by:
- $-\widetilde{C\setminus\{0\}}$ the universal covering space of $C\setminus\{0\}$;

$$-S_{\theta}$$
 the sector in $C \setminus \{0\}$ defined by $\{t \in C \setminus \{0\}; |\arg t| < \theta\};$

 $-S(\varepsilon(s)) = \{t \in \widetilde{C \setminus \{0\}}; 0 < |t| < \varepsilon(\arg t)\} \text{ for some positive-valued function } \varepsilon(s) \\ \text{defined and continuous on } R_s;$

$$-D(\delta) = \{x \in \mathbb{C}^n; |x_i| < \delta, i=1, \cdots, n\};\$$

- $-C\{x\}$ the ring of germs of holomorphic functions at the origin of C_x^n ;
- $-\tilde{\mathcal{O}}_{+}$ the set of all functions u(t, x) satisfying the following conditions (i) and (ii):
 - (i) u(t, x) is holomorphic in $S(\varepsilon(s)) \times D(\delta)$ for some $\varepsilon(s)$ and $\delta > 0$;
 - (ii) there is an a>0 such that for any $\theta>0$ and any compact subset K of $D(\delta)$

$$\max_{x \in K} |u(t, x)| = O(|t|^a)$$

as t tends to zero in S_{θ} .

Put

(3.1)
$$\rho(x) = \frac{\partial F}{\partial u}(0, x, 0, 0).$$

Then the main result for (2.1) is stated as follows:

Theorem 2. Assume
$$(A_1)$$
, (A_2) , (A_3) and $\rho(0) \in N^*$. Then we have:

(1) (Holomorphic solutions). The equation (2.1) has a unique solution $u_0(t, x)$ holomorphic near the origin of $C_t \times C_x^n$ satisfying $u_0(0, x) \equiv 0$.

(2) (Singular solutions). Denote by S_+ the set of all $\tilde{\mathcal{O}}_+$ -solutions of (2.1). Then:

$$\mathcal{S}_{+} = \begin{cases} \{u_{0}\}, & \text{when } \operatorname{Re} \rho(0) \leq 0, \\ \{u_{0}\} \cup \{U(\varphi) ; \ 0 \neq \varphi(x) \in C\{x\}\}, & \text{when } \operatorname{Re} \rho(0) > 0, \end{cases}$$

where u_0 is the holomorphic solution in (1), and $U(\varphi)$ is an $\tilde{\mathcal{O}}_*$ -solution of (2.1) having the expansion of the following form

$$\begin{cases} U(\varphi) = \sum_{i \ge 1} u_i(x) t^i + \sum_{\substack{i+2j \ge k+2 \\ j \ge 1}} \varphi_{i,j,k}(x) t^{i+j\rho(x)} (\log t)^k, \\ \varphi_{0,1,0}(x) = \varphi(x). \end{cases}$$

Remark 1. Note that the above result is consistent with the one for (1.1). To see this, we have only to recall that (1.1) is transformed into the equation $\left(t\frac{\partial}{\partial t}-\rho\right)w=0$ under the relation

No. 3]

$$u = w + a_{1,0}t + \sum_{i+j \ge 2} a_{i,j}t^i w^j$$

and therefore in (1.2) the condition $u(t) \in \tilde{\mathcal{O}}_+$ is equivalent to the condition $ct^{\rho} \in \tilde{\mathcal{O}}_+$ (see Hukuhara-Kimura-Matuda [4]).

Remark 2. Let us consider

(3.2)
$$t\frac{\partial u}{\partial t} = G\left(t, x, u, t\frac{\partial u}{\partial x}\right),$$

where G(t, x, u, v) is a holomorphic function in Δ satisfying G(0, x, 0, 0)=0in Δ_0 . Then the equation (3.2) is a particular form of partial differential equations of Briot-Bouquet type with respect to t in our sense. In this case, the $\tilde{\mathcal{O}}_+$ -solution $U(\varphi)$ in Theorem 2 is reduced to a solution of the following form:

$$\begin{cases} U(\varphi) = \sum_{i+j+k \ge 1} \varphi_{i,j,k}(x) t^i (t^{\rho(x)})^j (t \log t)^k, \\ \varphi_{0,1,0}(x) = \varphi(x). \end{cases}$$

Thus, our equation (2.1) is quite similar to the Briot-Bouquet equation (1.1) not only in the form of the equation but also in the structure of solutions and therefore the definition in §2 will be reasonable. The holomorphic function $\rho(x)$ defined by (3.1) may be called the characteristic exponent function of (2.1).

Details and proofs will be published elsewhere.

References

- Ch. Briot and J. Cl. Bouquet: Recherches sur les propriétés des fonctions définies par des équations différentielles. J. Ecole Polytech., 21, 133-197 (1856).
- [2] R. Gérard: Etude locale des équations différentielles de la forme xy'=f(x, y) au voisinage de x=0. J. Fac. Sci. Univ. Tokyo, **36** (1989).
- [3] E. Hille: Ordinary Differential Equations in the Complex Domain. John Wiley and Sons (1976).
- [4] M. Hukuhara, T. Kimura, and T. Matuda: Equations différentielles ordinaires du premier order dans le champ complexe. Publ. of the Math. Soc. of Japan (1961).
- [5] T. Kimura: Ordinary Differential Equations. Iwanami Shoten (1977) (in Japanese).