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1. Introduction. This paper deals with a close relation between a
hyperplane filled with elliptic orbits of a linear Hamiltonian system and a
certain quadratic first integral. To be more precise, it is proved that when
a linear Hamiltonian system admits an invariant hyperplane filled with
closed orbits, it leaves a quadratic orm invariant, and conversely, when a
certain quadratic first integral is admitted, there exists such an invariant
hyperplane.

By the way, the phase portrait drawn by a discrete-time system which
approximates a continuous Hamiltonian system is oten different rom that
of the original system. For example, a closed orbit o the original system
is usually destroyed by a discrete system, even when the original one is
linear. It seems that the result of this paper is of use for the purpose o
reproducing the original elliptic orbit by a discrete system when a certain
kind of first integrals is inherited.

2. Elliptic orbit of linear system. Let us think o a linear Hamilto-
nian system with N degrees of freedom given by

(1) dX _Hx, H e sp(N, R), x e R.
dt

We introduce into the phase space R both a Euclidean inner product (x, y)

--exy and a symplectic inner product (x, y)=txJy, where J=]--I and

the superfix t denotes matrix transpose. An orbit o (1) which starts from

x0 is closed, it and only i e’Xo=Xo holds for a positive constant . This
condition is equivalent to that H has pure imaginary eigenvalues, in other
words, H has a negative eigenvalue. Then, we defie a linear subspace by
( 2 ) F--{x e RlHx----x} (>0),
and assume that F:/:{O} rom now on. Let us py attention to the solution
curves of (1) which re contained in F. Choose an arbitrary q e H, q:/:O,
nd put

( 3 ) p-----1---Hq.
Then, q and p are linearly independent and spans a two-dimensional hyper-
plane F included by F.

Proposition 1. The orbit of (1) starting from q e F is an ellipse with
the period 2z:/, and lies in F. Furthermore, all elliptic orbits in are
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similar to each other.
Proof. Denote by q(t) and p(t) the solutions of (:l) starting rom q and

p, respectively. Since it holds that
( 4 ) Hq-- p, Sp---q,

cos (fit) sin (fit)] This shows thatwe have (q(t), p(t))---etn(q, p)----(q, p) --sin (fit) cos (fit)J"
the curve q(t) is a closed quadratic one in F.

The result means that F is full o ellipses with the period 2/. A
similar circumstance holds true in any other eigenspace Fr of H when the
eigenvalue is negative. In general, an orbit starting from a point in the
sum F+F is, however, like a Lissajous figure, and may not be closed.

We have not used the assumption that H belongs to sp(N, R), and the
result holds good in every linear system. In case of linear Hamiltonian
systems, the above plane F is characterized by a certain quadratic first in-
tegral, which is the theme o the next section.

:. Certain quadratic first integral. In this section, we show a close
relation between a certain first integral and the hyperplane F. Let F, F,
q and p be as in 1. Furthermore, we remark that
( 5 ) tHJ+JH--O
holds, for H belongs to sp(N, R).

Theorem 2. For an arbitrary q e F (qeO), define p by (3). Then, the
following quadratic form is a first integral of (1)

( 6 ) I(x)--1--txtJ(qtqWptp)Jx.
2

Proof. Put
(7.a) S--qtqWptp, (7.b) S---tJSJ,
and use (5), and we have dI/dt=txj(HSWStH)Jx/2. Since HS=--ptq/
flqtp= --(pt(Hp)+qt(Hq))= --StH, then dI/ dt vanishes.

Remark. The first integral (6) is indeperdent ot the choice
In act, a quadratic orm constructed rom another /e F in the same way
becomes (6) multiplied by a constant.

We show several properties of S"
(8.a) rank(S)---2, (8.b) S_0,
range (S)-- F, and ker (S)--Fz, where F" denotes the orthogonal complement
of F with respect to (,) and S_0 means that S is non-negative definite.
These are restated in terms of as ollows" rank ()---2, _0, range ()=
J(F), and ker (S)=J(F+/-). Now, the next step is to show that the converse
of the theorem is true if a slight condition is added. We give a definition
coacerning the conditiom

Definition 1. A linear subspace is called null [1], i and only
(q, p} vanishes for all vectors q and p in .

As for F in the above, when the eigenvalues +_i/ of H are simple, it is
not null. When F is not null, (q, p} is not zero or arbitrary linearly inde-
pendent elements q and p. Furthermore, F is null if and only if ICJ(F+/-).
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Theorem 3. Suppose that (1) has a quadratic first integral given by
I(x)--txSx/2 subject to S--S, rank (S)--2, and S_O. If F--range (JS) is
not null and H(F):/:(0}, then F is filled with elliptic orbits of (1) with a
single period.

Proof. If we define S by (7.b), then S satisfies (8). Therefore, S is
expressed as (7.a) in terms of two noa-zero vectors q and p subject to (q, p)
----0. Put F--{(q, p}}, and F is nothing but range (JS). Since F is not null
by supposition, (q, p} does not vanish. Now, since I(x) is a first integral,
it must hold that
(9) H.SJ=SJ.H.
Multiplying (9) by q and p from the right and using (q, p}:/:0, we can see
that Hq and Hp are expressed as linear combinations of q and p. Then,
we put
(10) Hq--qWp, Hp----’qWp,
where q, , ’, and/t are constants. Next, multiplying (9) by tq and tp rom
the left and using (10) and (q, p)=0, we have (aqWp)J=--(aq+p)J,
and (flq+q)J---(qWp)J. Then, it holds that --/t=0 and +--0,
and accordingly, that Hq=--tip and Hp=flq. Due to the supposition H(F)
=/={0}, is not equal to zero. Thus, the conclusion is obtained from Proposi-
tion 1.

The next corollary follows directly from the above prooL
Corollary 4. In F there exists a nonzero vector q which is orthogonal

to Hq with respect to (,).
Now, when F is null, the value of I(x) on/ remains zero. Otherwise,

I(x) gives a positive definite form when restricted to F, and its level curve
on/ is nothing but an integral curve of (1). Furthermore, the Hamiltonian
vector field with the Hamiltonian I(x) is given by Hx=SJx. Then, it fol-
lows from (4) and (7.a) that Hx is equal to (p, q>/.Hx for every x e F.
That is, as ar as we are restricted to F, the symmetry generated by I(x)
produces the elliptic orbit o the original system (1). Moreover, ker (H) is
equal to J(F+/-), and this symmetry yields no action in any direction in J(F+/-).

We close this paper by stressing again that an integral curve on/ is
nothing but a level curve of I(x) i F is not null. If a discrete-time system
which approximates (1) inherits the first integral given by (6) and leaves/

invariant, the discrete orbit starting from a point in F, namely, a point
sequence, lies on the solution curve o (1) itself. In addition, i the discrete
system is sufficiently near the identity mapping, it results that at least in
every F the phase portrait of (1) is reproduced accurately by the discrete-
time system.
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