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1. Introduction. Let 7 be the n-th positive imaginary part of the
zeros of the Riemann zeta function (s). We have shown in [1] and [2] that
for each integer k>_ 1 and for T To,

C TlogT <::
log T T<r,,KST

0%+1_7n)<C2 T log T
log T

where C and C are some positive constants. The implicit constant C
might be large. The purpose of the present article is to get an explicit C
(for the case k=2) under the assumption of the Riemann Hypothesis. We
shall prove the following theorem.

Theorem 1. For T> To, we have

(7n/--7)_<9".
r<T

2zT
Tlog
2z

We shall prove this theorem as an application of the following mean
value theorem which has been proved in [5]. We put

S(t)= 1- arg (-+ it)
and

T log T )-1r(a)=r(a,T)=
0<,, - 4+(r-r,)’

where 7 and 7’ run over the imaginary parts (=/=0) of the zeros of 5(s).
Theorem 2. Suppose that 0<d=o(1). Then we have for T> To,

(S(t d) S(t)Ydt+
T lo (r/) 1-- cos (a) da+ F(a) 1- cos ad log da + o(T).
7 6 6

In fact, we shall use it in the following form.
Corollary. Suppose that T>To and 1/log(T/2z)<_d=o(1).

have with 101<_ 1 and the Euler constant Co,
T (A log

Then we

T(Co_ sin (d log (T/2u)) +20( 1 +2)+T d log
+- d log

2
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To get corollary from Theorem 2, we notice that

:o/2) I--cos(a)a da=log(llog)+Co-Ci(zllog)
and that by Theorem 2 of Goldston [6],

f: F(a)a (1--cos (az/log-))da <2 F(a) da 4.
(2

To prove Theorem 2, we have applied Goldston’s work [6] and also used the
following lemma.

Lemma. Suppose that aTA with some positive constant A. Then we
have

W---- Sff -t-a) (( T log T.
O<r<_T,+a>O

We shall give its proof below, using Selberg’s explicit formula or S(t)
and the author’s recent results [3] on the distribution of the zeros of 5(s).

2. Proof of Theorem 1. Suppose that

T loglog T2 log
2

Then using the first formula in the introduction, we get

rr r/osrr,r 2 +O ..log T
rn+-rn2H

C/loglog T

JH T/logU Tg rn gT T/log2 Tgrn gT
rn+-nY 7n+-rnH

=M+M2+H T log T ( T )2 +0
logaT say.

Now for H y_(C log log T),

T/log T _’n

_
T T/log2 T<’nT

Fn+l-nY n+l-FnY

<3 1 +1-(2/3)Y
S t+ y -S(t dt

/lo., ( 1
1--[Y -y log

+ o ( T (log log T) )y log T

<
2 1

Using the above corollary, we get

12HT {21og(_Hlog)+2Co+9_sin(-Hlg)
(-H log-) 2--H3 lg ----T2z
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11/3 + 6 o(1)l+O(T(lOglog T.))./

Putting H--B/log (T/2) and taking B--10, we get

M-- 2TT 4 {B +(21g B+2C+9-23 sin(2B)++3381) }+o(1)
log

2u

8.55 2.Tlog
2

We may remark here that we can estima, in a similar manner, the
sum .r ((+-G)/r) or each integer r2.. Proo of Lemma. We use the following explicit formula or S(t)
due to Selberg [10] (cf. 14.21 o Titchmarsh [11]). Let A(n) be the von
Mangoldt function. Then

(S(t)=- A(n)sin (t log n) 0 1 Z +0
u <r n log n log Y nYU log Y

where t2, 4gYgt, a=(1/2)+(1/log Y) and
A(n) for lngY

Ar(n)=(A(n) log (Y/n) or YgngY.
log Y

We use this with Y=T, 0b1/2. We may suppose that agJ Y, since
otherwise we may replace J Y--a by max( Y--a, 0) in the argument
below.

W S(+ a) + O(T log T)
Y

A,(n) sin (if+ a) log n)
n<r n, log n

(+0
log Y r<rr

( 1 Z log ff+ a)) + O(T log T)+0
log Y -<rr

W+W+W+O(T log T), say.
Using theorem of [3], we get

W<< At(n)
<r n log n

<r log "+ log T loglog T << T log T.

1 TlogT{W<<
log Y _<

A(n) Ar(m)Ar(n)1 (TlogT TlogT4
log Y n<r, <,<, (ran)

Y
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1
log----- /T log T(W4% Ws}1/2, say.

Using theorem of [3] again, we get:

Ws<<T A(n/m)Ar(m)Ar(n) + At(re)At(n) log T
<n<r n <n<r2 mn log n

m

+ Z
m<n<Y

The last sum is
l
(,a A(k)A (m)) << 1<<log

Treating the other sums similarly, we get
W<< T log T.

Since W<< T log T, we get W2 << T log T.
Since W << T log T, we get

W<<T log T.
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