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Prime Producing Quadratic Polynomials and Class.number
One Problem for Real Quadratic Fields

By Masaki KOBAYASHI
Department of Mathematics, School of Science, Nagoya University

(Communicated by Shokichi IY.NA.G), M. J.A., May 14, 1990)

Let F--Q(/) (m0" square-free integer) be a real quadratic field.
Denote by h-h(m) and d-d(m) the class number in the wide sense and the
discriminant of F, respectively. Recently the following theorem was ob-
tained by Yokoi [4] and Louboutin [1]"

Theorem 1 (Yokoi-Louboutin). Let p be an odd prime.
In case m=4p2+l, h(m)-I if and only if -n2+n+p is prime for any

integer n such that 1

_
n p.

In case m=p+4, h(m)---1 if and only if -n+n+(p+3)/4 is prime

for any integer n such that 1_n_(p-1)/2.
In case m-p(p+4), h(m) 1 if and only if n +n+ (p2 1) 4 is prime

for any integer n such that l_n_(p+l)/2.
The purpose of this paper is to improve this theorem, especially con-

cerning the sufficient condition for h(m)-l, by using "reduced quadratic
irrational", and to prove the following"

Theorem 2. In case m 4p + 1, h(m) 1 if and only if n +n+p is
prime for any integer n such that /p+l_n_p-1.

In case m p+4, h(m) 1 if and only if n +n+ (p+ 3) 4 is prime

for any integer n such that /(p+5)/2_n_(p-1)/2.
In case m p(p+4), h(m) 1 if and only if n +n+p+ (p2 1) / 4 is

prime for any integer n such that /(p+ 1)/2_n_(p-1)/2.
To prove Theorem 2, we need some preliminaries.
For two quadratic irrational numbers a, fl, we say that they are equi-

valent to each other and denote a fl if and only if the periodic part in the
expansion of a into a continued fraction is equal to that of . Moreover,
we say that a is reduced if and only if a1-a’0, where a’ is conjugate
of a over Q. Then it is well-known that a is reduced if and only if the
expansion of a into a continued fraction is purely periodic (cf. Perron [2]).

Put R(m)={a e Q(/)" a=(b+/d )/2a (a, b e N), is reduced}. Then
it is easily verified that (d0+/-)/2 belong to R(m), if we choose do eN
satisfying do /-d- do +2 and d0-- d mod 2.

Now we can obtain the following three lemmas"

Lemma 1. Set (do+/ d )/2=[a, a., ..., a], then h(m)=l if and only

if R(m)-- {[a, a /1, ", a, al, ..., a_l]" 1 i<:_ n}.
Proof. This lemma follows easily from h(m) (R(m)/N) (cf. Yama-

moto [3]).
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Lemma 2. A quadratic irrational (b + /-)/2a belongs to R(m) if and
only if 4al(d--b), (b+/ d )/2>a>(--b+/-)/2, b(/ d

Proof. We put a=(b+/d)/2a (a, beN). Then a:>l--a’0 is
equivalent to (b+/d)/2a(--b+v d)/2, b(/d. On the other hand, if
a is reduced, then a, b satisfy 4a] (d--b). Hence Lemma 2 follows from
the definition of R(m).

Now if m=4t+l or t-}-4, h(m)=l implies that m is prime and t is
prime or one (cf. [4] Theorem 1), and in case m=t(t+4), h(m)=l implies
that both t and t+4 are prime and t= 3 mod 4 rom genus theory. There-
fore we have only to consider the cases m=4p+l, p+4 or p(p+4) with an
odd prime p.

Lemma :. In case m=4p + 1, h(m) 1 if and only if R(m) {(2/9-1 +
/)/2, (2p--lW/)/2p, (1-t-/)/2p}.

In case m--p+4, h(m)--1 if and only if R(m)={(p+/-)/2}.
In cas’e m=p(p+4), h(m) 1 if and only if R(m) {(p-i-/)/2, (/9 +/)

/2p}.
Proof. In case m--4p + 1, we have (d0-t- /-)/ 2 (2p 1 +/)/2--

[2p--l, 1, 1], (2p--lW/)/2p-[1, 1, 2p--l], (1-{-/)/2p-[1, 2p--l, 1].
In case m p+4, we have (do +/d ) / 2-- (p+/)/2 [p] and in case m
p(p+4), we have (do+/ d )/2--(p+/-)/2=[p, 1], (pW/)/2p=[1, p].
Hence the lemma follows rom Lemma 1.

Now we can prove our main theorem.

Proof of Theorem 2. The necessity is clear from Theorem 1.

In case m-- 4p + 1, assume that n +n+p is prime for any integer n
satisfying /p+l<_n<_p-1. By Lemma 3, it is enough to show that if

(b + /d ) / 2a e R(m), then (a, b) (1, 2p 1), (p, 2p 1) or (p, 1).
If (b+)/2a belongs to R(m), then 4[m--b holds, nd hence b is odd

because m is odd. Put b=2n--1; then we have l<_n<_p and m-b
1--(2n--ly--4(--n+n+p), since l_<b(/. Now by Lemma 2, (b+/-.)
/2a belongs to R(m) if and only if

a}(--n+n+p), --n+p+l<_a<_n+p--1, l<_n<_p. (,)
Therefore it is enough to verify that (a, n)’s satisfying (,) are exactly
(1, p), (p, /9) and (p, 1). In case n=p, -n+n+p is equal to
n=p, (a, n)’s stisfyig ( ) are exactly (1,/9) and (/9, p). For n_<p--1, we

hve --n+n+pn+p--1 and --n-}-p+ll. In cse /p+l<_n<_p--1,
there does not exist any (a, n)’s stisfying ( ) by our assumption.

In case n</p+ 1, put a=/9+ x. Then n+/9+ 1 <_a<:n+p-- 1 implies

--n+ l.<_x<_n--1. Since -n+n+p=(p+x)(p-x)-n+n+x=_- -n+n+x
mod (/9 + x), (a, n) satisfies ( if and only i n +n+ x_-__ 0 mod (/9+ x).
O the other hand, p+x>__p--n+l holds, and moreover --n+l"--n+n+
x_> n +n, which implies n+n+xl_<n-n. We see that n</p+ 1
yields n n<p--n+ 1, and hence n/n+xl</9+ x. Therefore n +n
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+x----0 mod (p+x) implies -n+n+x=O. Finally, if n>2, then --n+n+x
<0, and if n=l, then x=0. Hence if n</p+l, then (a, n) satisfying ( )
is just (p, 1) only. Thus it follows that (a, n)’s satisfying ( ) are exactly
(1, p), (p, p) and (p, 1).

We can also prove the second case and the third case in the same way.
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