33. Prime Producing Quadratic Polynomials and Class-number One Problem for Real Quadratic Fields

By Masaki Kobayashi
Department of Mathematics, School of Science, Nagoya University

(Communicated by Shokichi Iyanaga, m. J. A., May 14, 1990)

Let $F=Q(\sqrt{m})(m>0$: square-free integer) be a real quadratic field. Denote by $h=h(m)$ and $d=d(m)$ the class number in the wide sense and the discriminant of F, respectively. Recently the following theorem was obtained by Yokoi [4] and Louboutin [1]:

Theorem 1 (Yokoi-Louboutin). Let p be an odd prime.
In case $m=4 p^{2}+1, h(m)=1$ if and only if $-n^{2}+n+p^{2}$ is prime for any integer n such that $1 \leq n<p$.

In case $m=p^{2}+4, h(m)=1$ if and only if $-n^{2}+n+\left(p^{2}+3\right) / 4$ is prime for any integer n such that $1 \leq n \leq(p-1) / 2$.

In case $m=p(p+4), h(m)=1$ if and only if $-n^{2}+n+\left(p^{2}-1\right) / 4$ is prime for any integer n such that $1 \leq n \leq(p+1) / 2$.

The purpose of this paper is to improve this theorem, especially concerning the sufficient condition for $h(m)=1$, by using "reduced quadratic irrational", and to prove the following:

Theorem 2. In case $m=4 p^{2}+1, h(m)=1$ if and only if $-n^{2}+n+p^{2}$ is prime for any integer n such that $\sqrt{p+1} \leq n \leq p-1$.

In case $m=p^{2}+4, h(m)=1$ if and only if $-n^{2}+n+\left(p^{2}+3\right) / 4$ is prime for any integer n such that $\sqrt{(p+5) / 2} \leq n \leq(p-1) / 2$.

In case $m=p(p+4), h(m)=1$ if and only if $-n^{2}+n+p+\left(p^{2}-1\right) / 4$ is prime for any integer n such that $\sqrt{(p+1) / 2} \leq n \leq(p-1) / 2$.

To prove Theorem 2, we need some preliminaries.
For two quadratic irrational numbers α, β, we say that they are equivalent to each other and denote $\alpha \sim \beta$ if and only if the periodic part in the expansion of α into a continued fraction is equal to that of β. Moreover, we say that α is reduced if and only if $\alpha>1>-\alpha^{\prime}>0$, where α^{\prime} is conjugate of α over Q. Then it is well-known that α is reduced if and only if the expansion of α into a continued fraction is purely periodic (cf. Perron [2]).

Put $R(m)=\{\alpha \in Q(\sqrt{m}): \alpha=(b+\sqrt{d}) / 2 a(a, b \in N), \alpha$ is reduced $\}$. Then it is easily verified that $\left(d_{0}+\sqrt{ } \bar{d}\right) / 2$ belong to $R(m)$, if we choose $d_{0} \in N$ satisfying $d_{0}<\sqrt{d}<d_{0}+2$ and $d_{0} \equiv d \bmod 2$.

Now we can obtain the following three lemmas:
Lemma 1. Set $\left(d_{0}+\sqrt{d}\right) / 2=\left[\overline{a_{1}, a_{2}, \cdots, a_{n}}\right]$, then $h(m)=1$ if and only if $R(m)=\left\{\left[\overline{a_{i}, a_{i+1}, \cdots, a_{n}, a_{1}, \cdots, a_{i-1}}\right]: 1 \leq i \leq n\right\}$.

Proof. This lemma follows easily from $h(m)=\#(R(m) / \sim$) (cf. Yamamoto [3]).

Lemma 2. A quadratic irrational $(b+\sqrt{d}) / 2 a$ belongs to $R(m)$ if and only if $4 a \mid\left(d-b^{2}\right),(b+\sqrt{d}) / 2>a>(-b+\sqrt{d}) / 2, b<\sqrt{d}$.

Proof. We put $\alpha=(b+\sqrt{d}) / 2 a(a, b \in N)$. Then $\alpha>1>-\alpha^{\prime}>0$ is equivalent to $(b+\sqrt{d}) / 2>a>(-b+\sqrt{d}) / 2, b<\sqrt{d}$. On the other hand, if α is reduced, then a, b satisfy $4 a \mid\left(d-b^{2}\right)$. Hence Lemma 2 follows from the definition of $R(m)$.

Now if $m=4 t^{2}+1$ or $t^{2}+4, h(m)=1$ implies that m is prime and t is prime or one (cf. [4] Theorem 1), and in case $m=t(t+4), h(m)=1$ implies that both t and $t+4$ are prime and $t \equiv 3 \bmod 4$ from genus theory. Therefore we have only to consider the cases $m=4 p^{2}+1, p^{2}+4$ or $p(p+4)$ with an odd prime p.

Lemma 3. In case $m=4 p^{2}+1, h(m)=1$ if and only if $R(m)=\{(2 p-1+$ $\sqrt{m}) / 2,(2 p-1+\sqrt{m}) / 2 p,(1+\sqrt{m}) / 2 p\}$.

In case $m=p^{2}+4, h(m)=1$ if and only if $R(m)=\{(p+\sqrt{m}) / 2\}$.
In case $m=p(p+4), h(m)=1$ if and only if $R(m)=\{(p+\sqrt{m}) / 2,(p+\sqrt{m})$ $/ 2 p\}$.

Proof. In case $m=4 p^{2}+1$, we have $\left(d_{0}+\sqrt{d}\right) / 2=(2 p-1+\sqrt{m}) / 2=$ $[\overline{2 p-1,1,1]},(2 p-1+\sqrt{m}) / 2 p=[\overline{1,1,2 p-1}],(1+\sqrt{m}) / 2 p=[\overline{1,2 p-1,1]}$. In case $m=p^{2}+4$, we have $\left(d_{0}+\sqrt{d}\right) / 2=(p+\sqrt{m}) / 2=[p]$ and in case $m=$ $p(p+4)$, we have $\left(d_{0}+\sqrt{d}\right) / 2=(p+\sqrt{m}) / 2=[\overline{p, 1}],(p+\sqrt{m}) / 2 p=[\overline{1, p}]$. Hence the lemma follows from Lemma 1.

Now we can prove our main theorem.
Proof of Theorem 2. The necessity is clear from Theorem 1.
In case $m=4 p^{2}+1$, assume that $-n^{2}+n+p^{2}$ is prime for any integer n satisfying $\sqrt{p+1} \leq n \leq p-1$. By Lemma 3, it is enough to show that if $(b+\sqrt{d}) / 2 a \in R(m)$, then $(a, b)=(1,2 p-1),(p, 2 p-1)$ or $(p, 1)$.

If $(b+\bar{m}) / 2 a$ belongs to $R(m)$, then $4 \mid m-b^{2}$ holds, and hence b is odd because m is odd. Put $b=2 n-1$; then we have $1 \leq n \leq p$ and $m-b^{2}=4 p^{2}+$ $1-(2 n-1)^{2}=4\left(-n^{2}+n+p^{2}\right)$, since $1 \leq b<\sqrt{m}$. Now by Lemma 2 , $(b+\sqrt{\bar{d}})$ / $2 a$ belongs to $R(m)$ if and only if

$$
\begin{equation*}
a \mid\left(-n^{2}+n+p^{2}\right), \quad-n+p+1 \leq a \leq n+p-1, \quad 1 \leq n \leq p \tag{*}
\end{equation*}
$$

Therefore it is enough to verify that (a, n)'s satisfying ($*$) are exactly $(1, p),(p, p)$ and $(p, 1)$. In case $n=p,-n^{2}+n+p^{2}$ is equal to p. Hence if $n=p$, (a, n) 's satisfying $(*)$ are exactly $(1, p)$ and (p, p). For $n \leq p-1$, we have $-n^{2}+n+p^{2}>n+p-1$ and $-n+p+1>1$. In case $\sqrt{p+1} \leq n \leq p-1$, there does not exist any (a, n)'s satisfying ($*$) by our assumption.

In case $n<\sqrt{p+1}$, put $a=p+x$. Then $-n+p+1 \leq a \leq n+p-1$ implies $-n+1 \leq x \leq n-1$. Since $-n^{2}+n+p^{2}=(p+x)(p-x)-n^{2}+n+x^{2} \equiv-n^{2}+n+x^{2}$ $\bmod (p+x),(a, n)$ satisfies $(*)$ if and only if $-n^{2}+n+x^{2} \equiv 0 \bmod (p+x)$. On the other hand, $p+x \geq p-n+1$ holds, and moreover $-n+1 \geq-n^{2}+n+$ $x^{2} \geq-n^{2}+n$, which implies $\left|-n^{2}+n+x^{2}\right| \leq n^{2}-n$. We see that $n<\sqrt{p+1}$ yields $n^{2}-n<p-n+1$, and hence $\left|-n^{2}+n+x^{2}\right|<p+x$. Therefore $-n^{2}+n$
$+x^{2} \equiv 0 \bmod (p+x)$ implies $-n^{2}+n+x^{2}=0$. Finally, if $n \geq 2$, then $-n^{2}+n+x^{2}$ <0, and if $n=1$, then $x=0$. Hence if $n<\sqrt{p+1}$, then (a, n) satisfying (*) is just ($p, 1$) only. Thus it follows that (a, n)'s satisfying (*) are exactly $(1, p),(p, p)$ and ($p, 1$).

We can also prove the second case and the third case in the same way.

References

[1] S. Louboutin: Prime producing quadratic polynomials and class-number of real quadratic fields. I (preprint).
[2] O. Perron: Die Lehre von den Kettenbrüchen. Teubner, Leipzig (1913).
[3] Y. Yamamoto: Real quadratic number fields with large fundamental units. Osaka J. Math., 8, 261-270 (1971).
[4] H. Yokoi: Class-number one problem for certain kind of real quadratic fields. Proc. Int. Conf. on Class Number and Fundamental Units, Katata, Japan (1986).

