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The purpose of this paper is to provide sharp lower bounds for class
numbers, h(d), of real quadratic fields Q(/d ) o narrow Richaud-Degert
type; (R-D types) i.e., d--12+r where Irl e (1, 4}. These results generalize
those of Halter-Koch [2]. Moreover, the proof of the results presented
herein are dearer and more informative than those given in [2], in the
sense that one can literally count (in a combinatorial sense), up to the
bounds presented. Furthermore this generalizes certain results given in
Azuhata [1], Mollin [4]-[6], Hasse [3], and Yokoi [11]-[13]. In what follows
(x) denotes the number of distinct positive divisors of x.

Theorem 1. Let K=Q(/-); d square-free.
(1) /f d=a2+l; a>l odd then h(d)_2r(a)--2;
( 2 ) If d=4a-F 1 a> 1 then h(d) _r(a)-- 1
(3) If d=a+4, a:>l odd then h(d)r(a)-l;

(4) If d=a-4; a>3 odd then h(d)>( r(a-2)r(a+2) )= r(d)
4 4

( 5 ) If d 4a-1 a_1 then h(d) >...r(2a- 1)r(2a-t- 1) r(d)
2 2

Proof. (1) Let a= V[L-p’ with p’s distinct primes and P an O-
prime (where O is the ring of integers of K) above p. Also st p0=2;
with P0 above P0 and e0= 1.

Claim 1. If I=/:A=V[.__oP{’I with O_f_e then f=e for all i
with 0<i<r. (Here denotes equivalence in the class group of K.)

The P’s are not inert soA1 implies A=(x-Fy/-) for some primitive
integer (i.e. having no ,rational divisors other than _+_1), x+y/- e O.
Thus:

N(A)I Y(x q-y4’-) p’=x-dy.
By [6, Lemma 1.1, p. 40]:

(] p{’>2a= (] p:’ whence f, e,,
i-0 0

thus securing Claim 1.
Claim 2. All ideals [-[-o P’ for O_f_e are inequivalent except for

Let 1-[ --0 P{’- [I -o P’ for some 0<_ f gge. Suppose that some f>
g, so that (after possibly renumbering) we may assume without loss of
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generality that fg or O<_igtgr and fgg for t+l<_i<_r. Thus"

li p,_, [r p,_,. But, (] P’ 1. Therefore,
i=O i=t+l i=O

[] P-’-’ (] P; [I P{’-’ and so"
i=O i=t+l i=0

i=O i=t+l

say. Hence, as above; if B=/= 1 then (as above)"

i=O i=t+l i=O

whence"

Similarly"
i=t+l i=0

t=0 i=t+l

Thus f,=g, for i=0, ..., r, contradicting our assumption. Therefore no
such t exists and so f,=g, for i=0, 1, ..., r unless B--l; i.e., unless g,=0;
f,=e, for i--0, 1, ..., r=t.

Now we count the number of distinct ideals I-[L-0 P{’ for O<_f,e, and
we get 2 1-I L- (e, + 1)-2 of them (since we must exclude YI L-0 P’ and P0
because P0 1-[ [-- P’ since P0 P0, the conjugate of P0).

Hence h(d)2r(a)--2, which completes (1).
P{ are inequi-(2) d=4a+1. Leta I-[P’thenasin(1) all I-[

valent for O<_f,<e, except for ]-IL-1P,I. Since 2 does not enter into the
picture here we have"

h(d) r(a) l.
( 3 ) Exactly the same analysis as (2) yields the same result.
4 ) d--a--4. Let a-2- L- P then by the same methodology as

above we have all I-[[: P{’ or 0___f_l being ineqaivalent unless [I[-- PI.
However since all P are ramified then P---P-, so" [[sP V[s, P where

sns’= and SUS’={i}[=lo Hence we must remove i+1/2

ideals as being equivalent to ones already counted,-.(where ()is the binomial

coefficient). Thus we have exactly r(a--2)--2- inequivalent ideals. Since

r(a-2) =2" then we have in fact, r(a--2)/2=2’- of them. A similar
analysis of a+2 yields r(a--2)/2 inequvalent ideals. Moreover using the
techniques of (1) it can be shown that none of the ideals from a--2 are
equivalent to those of a+2 except or the trivial ideal. Thus h(d)
(r(a-- 2)r(a+ 2) / 2) (r(a-- 2)r(a+ 2) / 4), i.e., h(d) >_ v(a-- 2)r(a+2)/4.

( 5 ) d 4a-1. By a similar analysis to that of (4) we get the result
h(d) >_ r(2a-- 1)(2a+ 1) / 2.

The ramification of 2 accounts for the difference.
Remark 1. From Gauss’s genus theory it follows that h(d)2"-



No. 5] Real Quadratic Fields 111

where r is the number of distinct prime divisors of the discriminant of K
(excluding one prime p_=3 (mod 4)). Thus Theorem 1 (4)-(5) rediscovers
this fact for those forms. Moreover, the proof is far more elementary.

Remark 2. To illustrate the sharpness of the bounds consider
( 1 ) h(10)--2= 2r(3) 2
( 2 ) h(3)-- 1 r(3)-- 1
( 3 ) h(29) 1 r(5)-- 1
( 4 ) h(165) 2 r(165) 4;
( 5 ) h(35) 2 r(3-5) / 2.
Remark 3. The techniques used above do not generalize to extended

R-D types; i.e., those forms d=l+r where r]41, studied in [7]-[10]. The
reason is that [6, Lemma 1.1, p. 40] has too "narro.w" a bound. (Note that
we found all extended R-D types of class number one (with one possible
exception) in [9].)
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