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38. Solution of a Problem of Yokoi

By R. A. MoLLIN® and H. C. WILLIAMS *%

(Communicated by Shokichi IYANAGA, M. J. A., June 12, 1990)

In [12]-[16] Yokoi studied what he called p-invariants for a real
quadratic field @(v/ p) where p=1 (mod 4) is prime. In [9] we generalized
this concept to an arbitrary real quadratic field Q(v/ d) where d is positive
and square-free. We provided numerous applications including bounds for
fundamental units and an investigation of the class number one problem
related to non-zero n,, (defined below). It is the purpose of this paper to
give a complete list and a proof that the list is valid (with one possible
value remaining) of all Q(v/ d) having class number A(d)=1 when 7n,-0.
Moreover we show that if the exceptional value of d exists then it is a
counterexample to the Generalized Riemann Hypothesis. This completes the
task of Yokoi begun in [15]-[16].

In what follows the fundamental unit ¢,(>1) of Q(+/ d) is denoted

(ts+usv d)]o where o= {% 5 gi%,(ﬁﬁo‘g 4)}. Now set:

B=((2t;)/0—N(eq) —1)ug
where N is norm from Q(v' d). This boundary B was studied in [4], [5]
and [14].
The following generalizes Yokoi’s notion of a p-invariant n, where
p=1 (mod 4) is prime (see [12]-[16]).
Let n, be the nearest integer to B; i.e.,
_{[BJ if B—lBJ<%}
““UBl+1 if B—|BI>}
(where | x| is the greatest integer less than or equal to ).
In [9] we proved the following:
Theorem 1. Let d>>0 be squore-free and let u,>>2. Then the following
are equivalent :
(1) n,=0
(2) t,>4d/s
(3) wui>16d/q
The above generalizes the main result of Yokoi in [12].
We also proved in [9] the following consequences of Theorem 1.
Corollary 1. If n,#0 then ¢, <8d/d*.
Corollary 2. If n,#0 then there are only finitely many d with h(d)=1.
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Corollary 3. Let d, be a fixed positive square-free integer. Then there
are only finitely many d with w,=u,, and W(d)=1.

The above generalize results of Yokoi in [18]-[16]. Moreover this has
consequences for the Gauss conjecture as follows.

Let:

(G): There exist infinitely many real quadratic fields K=Q(+/ d) with
h(d)=1; (Gauss’s conjecture).

(Gy): There exist infinitely many d with %,=0 and h(d)=1.

(Gy): For a given natural number 7, there exists at least one real quadratic
field with & (d)=1 and u,>n,.

In fact it is easily seen that:

Theorem 2. (G) < (G« (Gy).

Moreover there are applications for the Artin-Ankeny-Chowla conjec-
ture; that »,%0 (mod p) if p=1 (mod 4) is prime; as well as the Mollin-
Walsh conjecture [6], that if d=7 (mod 8) is positive square-free then wu,==0
(mod d). In fact we proved the following in [9].

Theorem 3. If d>0 is square-free and n,+0 then u,z£0 (mod d).

Thus the aforementioned two conjectures hold when n,=-0.

Now we turn to the main function of this paper which is to use the
above results to actually determine all d with A(d)=1 and n,=0.

First we provide a table of such values, and then prove that we have
all of them, (except possibly one which we show would be a counter-example
to the Generalized Riemann Hypothesis).

Theorem 4. If h(d)=1 and n,+0 then (with possibly one more value
remaining) d is an entry in the following Table.

Table
log (eq) d log (eq) d log (eq) d log (¢d)

. 881373587 53 | 1.9657204716 | 237 | 4.3436367167 || 917 | 7.0741160992
1. 866264041 61 | 3.6642184609 | 269 | 5.0999036060 | 941 | 7.0343887062
0.4812118251 | 62 | 4.8362189128 | 293 | 2.8366557290 || 1013 | 6.8276304083
2.2924316696 | 69 | 3.2172719712 | 317 | 4.4887625925 | 1077 | b.8888702849
2. 71686593833 T7 | 2.1846437916 | 341 | 5.6240044731 | 1133 | 4.6150224728
2.9932228461 | 83 | 5.0998292455 | 398 | 6.6821070271 | 1253 | 5.1761178117
13 | 1.1947632173 | 93 | 3.3661046429 | 413 | 4.1106050108 | 1293 | 7.4535615360
14 | 3.4000844141 | 101 | 2.9982229503 | 437 | 3.0422471121 || 1493 | 7.7651450829
17 | 2.0947125473 | 133 | 5.1532581804 | 453 | 5.0039012599 | 1613 | 7.9969905191
21 | 1.5667992370 || 141 | 5.2469963702 | 461 | 5.8999048596 | 1757 | 6.9137363626
23 | 8.8707667003 || 149 | 4.1111425009 | 509 | 6.8297949062 | 1877 | 7.8796325418
29 | 1.6472311464 || 157 | 5.8613142065 | 557 | 5.4638497592 | 2453 | 8.1791997198
33 | 3.8281684713 | 167 | 5.8171023021 | 573 | 6.6411804655 | 2477 | 6.4723486834
37 | 2.4917798526 || 173 | 2.5708146781 | 677 | 3.9516133361 | 2693 | 8.3918567515
38 | 4.8038824281 || 197 | 3.8334775869 | 717 | 5.4847797157 | 3053 | 8.1550748053
41 | 4.1591271346 | 213 | 4.2902717358 | T73 | 4.9345256863 | 3317 | 8.5642675624
47 | 4.5642396669 || 227 | 6.1136772851 || 797 | 5.9053692726 | 3533 | 7.7985232220

Eaooiwn|
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Proof. By Corollary 1 we have that ¢;,<8d/s*. Thus our task is to
find all positive square-free d such that A(d)=1 and 1<¢,<8d/¢*. Let 4=
4d/s*. A classical class number formula is:

2h(d) log () =+ A L(1, %).

Moreover a result of Tatuzawa [11] says:

If 3> a>0 and 4>max(e'/?, e"?) then with one possible exception L(1,X)>
0. 655q/ 4« where Z is a real, non-principal, primitive character modulo A

We now use the above to complete our task.

Choose a«=.0885 and 4>80,775.9. Then, gince loge,;<log 24 we have;
(with one possible exception):

h(d)> (v 4)(.0885)(.655)/(2log 24) (4-").
Hence h(d)>1 if 4>5x10%; (in fact h(d)>1.026755418).

Now we proceed to show that below this bound the only A(d)=1 with
ea<8d/¢* are those in the Table. First we need some notation and facts
from the theory of continued fractions.

Let wy=(o—1++d)/oc and denote the continued fraction of w, by
Wqe={0, Oy, Oy, - - -, &) ; Whence having period k; and a,=1=|w,| while:

0= I_(Pt"i'\/i)/Qz_l for i>1,
where:
Py, Q)=(0—1,0); P;,,=0,Q,—P, for 1>0 and
QQ=d—P,y for i>0.

Now we return to our task.

Case 1. d=2, 3 (mod 4); whence 4=4d.

Since 4 is even then 2 ramifies. Thus by [3, Theorem 2.1], Q,,=2,
with k even whenever h(d)=1, provided 4>20. (If 4<20 then we get our
values d=2, 3 of the Table).

From [7] we also have:

k S
54:);]1 (P1+N/ d)/Qz-x (P, =>1).
Thus :
> W AW A 2P+ d) @iy
where the product runs from ¢=2 to i=£k, excluding i=~k/241.

Now;

(Py+V @) Q) (P +V )] Q)
=(Pt+l+'\/7)/(’\/E—P‘z)=a’lQi/(«/—d——pi))+1> 2'

If k>10 then &> d)(Wd /2)2¢»-1>8d, a contradiction. Since
k<10 then by computation we arrive at d<7653. Our computation shows
that of those values only the following satisfy our criteria and appear in
the Table:

de{2,3,6,7,11, 14, 23, 38, 47, 62, 83, 167, 227, 398}.

Case 2. d=4=1 (mod 8).

Thus 2 splits and so since k(d)=1 we get Q,/2=2=Q;_;/2 for some
70 (provided d>20). (If d<20 then we get only the value d=17 which
is on our Table).
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Therefore:
> WA WA D[PV d) QL >dV d 32>2d
when +'d > 64, a contradiction. (Here the product runs from ¢=2 to 1=k
excluding i=j+1 and i=k—j+1.)

Hence 4/ d <64; i.e., d<4096. In this range our computation gives us
only the following values satisfying our criteria: d € {17, 33, 41}.

Case 3. d=4=5 (mod 8).

By [2], since 4<5X10° there exists a prime p<67 such that (4/p)=1,
where (/) is the Kronecker symbol. Suppose +/ 4/2>67. Then p splits in
QW) and 80 Q,=Q,_,=2p for some j=0 (provided 4>20. If 4<20 then
we get only d=5, 13).

Now let t=(1++v5)/2 and y,=(P,++ d)/Q,_,. By [10, Corollary 1,
p. 873] [[2-a >~ for b>a. Thus:

I k=4 &
l‘l‘ wt_____iUz '\kt isl;["_z"lft vl s ,\kt>,tj 2+Kk-J-(J+2)+K—-(Kk j+2)=1.k (]
(where the initial product ranges over =2 to i=Fk excluding i=j+1 and
t=k—7j+1).

Hence > d /2)(Wd /200 [[v>2d(v d 5%/ 16p%)
where the product ranges as in the previous one. Since p<67 we get that
if 2*-¢>536 then: +/ dz*-*>T1824>16p°. But *-*>536 implies k—6
> (log 536)/log t~13.06 so k>19.06. Thus: If d>17956 and k>20 then
es>2d, a contradiction. If d>17956 and k<20 then % (d)=1 implies by
computation that d<30917. In this case there exists a prime p<29 such
that (d/p)=1. Hence if vVd>2-29=58 we get Q;=Q;.,=2p for some
p<29. Thus e;>2d(v d*"°/16-29%) as above. Hence, if d>13456 and
k>16 then ¢, >2d, a contradiction. If d>13456 and k<15 then d<<23117.
Our computation on this bound now yields the remaining values in the
Table.

Remark 1. In [15] Yokoi found the 30 primes p=1 (mod 4) with x(p)
=1 and n,#0 (with one possible exception). We have completed the task
by adding another 38 values to the list for a total of 68. As seen by the
above proof there are 14 values of d=2, 3 (mod 4) of which 9 are primes.
For d=1 (mod 8) we got only 17, 33 and 41. The remainder are d=5
(mod 8). Of these 51 remaining values 28 are primes, those found by
Yokoi along with 17 and 41. The composite values which we added are
the 23 values:

{21, 69, 77, 93, 133, 141, 213, 237, 341, 413, 437, 453, 573, 7117,
917, 1077, 1133, 1253, 1293, 1757, 2453, 3053, 3317}.

We also have a list, too long to include here, of all values of square-
free d with n,=0, up to 39,999 with their class numbers and regulators.

Remark 2. Kim [1] has shown that if the Generalized Riemann
Hypothesis (GRH) holds then Tatuzawa’s theorem is true without exception.
Hence if the exceptional value exists then it is a counterexample to the
GRH.
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Remark 3. Observe that the Table contains all the ERD-types with
h(d)=1 (i.e., all types h(d)=1 where d=0I*+r with 4/=0 (mod r)). These
were found by the authors in [8]. Thus there are 25 non-ERD type and
they are

{41, 61, 133, 149, 157, 269, 317, 341, 461, 509, 557, 773, 797,
917, 941, 1013, 1493, 1613, 1877, 2453, 2477, 2693, 3053, 3317,
3533}.
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