37. On Certain Homotopy-homomorphic Elements of $\pi_{n+1}(X)$

By Akira Sasao
Department of Mathematics, School of Science and Engineering, Waseda University
(Communicated by Shokichi Iyanaga, m. J. a., June 12, 1990)

§ 0. Introduction. Let X be a topological space with a base point x_{0} and let $\Omega(X)$ be the loop space of X at x_{0}. We give $\Omega(X)$ the constant loop at x_{0} as a base point. As well-known there exists the isomorphism: $\pi_{n+1}(X)$ $\rightarrow \pi_{n}(\Omega X)$. We identify elements of these groups by this isomorphism. Now let a, b be given integers and $\mu: S^{n} \times S^{n} \rightarrow S^{n}$ be a map of type (a, b), i.e. such that $\mu(x, *)$ and $\mu(*, y)$ are maps $S^{n} \rightarrow S^{n}$ of degree a and b respectively. We call an element α of $\pi_{n+1}(X)$ a μ-homomorphic element (or to be μ-homomorphic) if and only if

$$
\alpha(\mu(x, y))=\omega\left(\alpha\left(m_{a}(x)\right), \alpha\left(m_{b}(y)\right)\right)
$$

where ω denotes the usual multiplication in $\Omega(X)$ and m_{a} is a map: $S^{n} \rightarrow S^{n}$ of degree a (in fact $m_{a}(x)=\mu(x, *)$).

In this note our purpose is to find an obstruction for determining to be μ-homomorphic. As a result we prove

Theorem 1. For an element α of $\pi_{n+1}(X), \alpha$ is μ-homomorphic if and only if $\alpha_{*}(c(\mu))=0$ where $c(\mu)$ denotes the Hopf construction as defined by James ([2]).

An analogous problem has been considered in case of $\pi_{3}(G)$ for compact connected Lie groups G and $(a, b)=(1,1)$ by Takahashi ([3]).

Our obstruction defines a correspondence

$$
\chi: \pi_{n}(\Omega(X)) \longrightarrow \pi_{2 n}(\Omega(X)) .
$$

This correspondence χ is not neccesarily homomorphic. We prove
Theorem 2. χ is homomorphic if $\Omega(X)$ is a homotopy commutative Hopf space under the usual multiplication.
§1. An obstruction. Denote with $\bar{\alpha}$ the adjoint element of $\alpha \in$ $\pi_{n}\left(\Omega(X)\right.$), and consider two maps: $S^{n} \times S^{n} \rightarrow \Omega(X) \times \Omega(X)$ in the following diagram:

where $\mu_{1}(x)=\mu(x, *)$ and $\mu_{2}(y)=\mu(*, y)$. These two maps, $\alpha(\mu(x, y))$ and $\omega\left(\alpha\left(\mu_{1}(x)\right), \alpha\left(\mu_{2}(y)\right)\right)$ coincides with each other on the sub-space $S^{n} \vee S^{n}$, so we have the difference element $\chi(\alpha) \in \pi_{2 n}(\Omega(X))$ defined by these maps. Since $\Omega(X)$ is a Hopf space we have, from Puppe exact sequence,

Lemma 1. α is μ-homomorphic if and only if $\chi(\alpha)=0$.
Thus it is sufficient for our purpose to describe $\chi(\alpha)$ as stated in

Theorem 1. Let $\iota: S^{n} \rightarrow \Omega\left(S^{n+1}\right)$ be the inclusion. First we note a decomposition of $\alpha: S^{n} \rightarrow \Omega\left(S^{n+1}\right) \rightarrow \Omega(X)$,

$$
\alpha=(\Omega \bar{\alpha}) \iota .
$$

Then from the diagram (1) we obtain the diagram:
(2)

and we have
(3)

$$
\chi(\alpha)=(\Omega(\bar{\alpha})) \cdot(\chi(\iota))
$$

from the naturality of difference elements.
Now we replace the space $\Omega\left(S^{n+1}\right)$ by the reduced product $S^{n}(\infty)$ ([1]). Then we obtain the diagram:

where i denotes the inclusion map : $S^{n} \rightarrow S^{n}(2) \rightarrow S^{n}(\infty)$ and q is the identification $(x, *) \equiv(*, x)$.

Lemma 2. In the diagram (4) two maps are given by $(x, y) \longrightarrow[\mu(x, y)]$ and $[\mu(x, *), \mu(*, x)]$.
Then the difference element of these maps, i.e $\chi(i)$ is obtained from the Hopf construction of μ.

Proof. Consider a map between diagrams:
(5)

In the lower diagram two maps are given by

$$
(x, y) \longrightarrow[(x, y)] \quad \text { and } \quad[(x, *),(*, y)] .
$$

We denote the difference element of these maps with $d(n, n)$, then the characterization of the Hopf construction by James ([2]) shows that $d(n, n)$ is the universal example of any map from $S^{n} \times S^{n}$ to a space and therefore $\mu(\infty) \cdot(d(n, n))$ is the Hopf construction of μ, so the proof is completed.

Now the proof of Theorem 1 easily follows from Lemma 2 and (5).
$\S 2$. The correspondence χ. Now our obstruction χ defines a correspondence

$$
\pi_{n+1}(X) \longrightarrow \pi_{2 n+1}(X), \quad\left\{\pi_{n}(\Omega(X)) \longrightarrow \pi_{2 n}(\Omega(X))\right\}
$$

First we prove
Lemma 3. For a map $\mu: S^{n} \times S^{n} \rightarrow S^{n}$ of type (a, b) we have

$$
\chi(\alpha+\beta)=\chi(\alpha)+\chi(\beta)+a b[\alpha, \beta] .
$$

where [,] denotes Whitehead product.
Proof. By Theorem 1 we have

$$
\chi(\alpha+\beta)=(\alpha+\beta)_{*}(c(\mu)) .
$$

Hence, a well-known formula ([4]) gives

$$
\chi(\alpha+\beta)=\chi(\alpha)+\chi(\beta)+H(\mu)[\alpha, \beta]
$$

where $H(\mu)$ is the Hopf invariant of $c(\mu)$. Then the proof is completed from $H(\mu)=a b$. Therefore we have

Proposition 1. If all Whitehead products vanish in $\pi_{*}(X)$ then χ is a homomorphism.

Now the proof of Theorem 2 follows from Lemma 3 because the formula of Lemma 3 has the adjoint form in $\pi_{*}(\Omega(X))$

$$
\chi(\alpha+\beta)=\chi(\alpha)+\chi(\beta)+a b\langle\alpha, \beta\rangle
$$

where \langle,$\rangle denotes Samelson product.$
Let μ_{1}, μ_{2} be two maps of the same type and χ_{i} be the obstruction for $\mu_{i}(i=1,2)$. We prove

Proposition 2. Our obstruction is determined by the type of μ only, namely $\chi_{1}=\chi_{2}$.

Proof. First we note that there exists a map $f: S^{2 n} \rightarrow S^{n}$ such that μ_{2} is decomposed as follows:

$$
S^{n} \times S^{n} \underset{\phi}{\longrightarrow}\left(S^{n} \times S^{n}\right) \vee S^{2 n} \underset{1+f}{\longrightarrow} S^{n}
$$

where ϕ denotes a map pinching to the boundary of a small $2 n$-disk imbedded in $S^{n} \times S^{n}$ to a point. By Theorem 1 and the above decomposition we have

$$
\begin{aligned}
\chi_{2}(\alpha) & =\alpha_{*}\left(c\left(\mu_{2}\right)\right)=\alpha_{*}\left(\Sigma \mu_{1}+\Sigma f\right)(\Sigma \phi)(d(n, n)) \\
& =\alpha_{*}\left(\Sigma \mu_{1}+\Sigma f\right)(d(n, n)+(0))=\alpha_{*}\left(\Sigma \mu_{1}\right)(d(n, n)) . \\
& =\alpha_{*}\left(c\left(\mu_{1}\right)\right)=\chi_{1}(\alpha) .
\end{aligned}
$$

Thus the proof is completed.
§4. Examples. If n is even there exists no map of type (a, b) except $(a, 0)$ or $(0, a)$, so we suppose that n is odd in this section. Let $\mu: S^{n} \times S^{n}$ $\rightarrow S^{n}$ be a map of type (a, b) (if $n=3,7, a, b$ are arbitrary and otherwise $a b$ is even), then by Proposition 2 we may assume that

$$
\begin{aligned}
c(\mu) & =a b h_{n+1} \quad \text { if } n=3,7 \\
& =a b / 2\left[\iota_{n+1}, \iota_{n+1}\right] \quad \text { otherwise }
\end{aligned}
$$

where h_{n+1} denotes the Hopf map of $\pi_{2 n+1}\left(S^{n+1}\right)$.
(1) $\pi_{n+1}\left(S^{n+1}\right)$. We identify an element of this group with an integer m through its degree. Since we have

$$
\begin{aligned}
m_{*}(c(\mu)) & =a b m 2 h_{n+1} \quad \text { if } n=3,7 \\
& =(a b / 2) m 2\left[\iota_{n+1}, \iota_{n+1}\right] \quad \text { otherwise } .
\end{aligned}
$$

We see that an element of $\pi_{n+1}\left(S^{n+1}\right)$ is μ-homomorphic if and only if it is trivial.
(2) $\pi_{n+1}\left(S^{n}\right)(n \geqq 3)$. This group contains only one non-trivial element η_{n} of order 2. In this case we have

$$
\begin{array}{rlrl}
m_{*}(c(\mu)) & =a b \eta_{n} h_{n+1} & \text { if } n=3,7 \\
& =a b / 2\left[\eta_{n}, \eta_{n}\right] & & \text { otherwise } .
\end{array}
$$

Hence we see that if n is $3,7, \eta_{n}$ is μ-homomorphic if and only if $a b$ is even, otherewise η_{n} is μ-homomorphic if and only if $a b \equiv 0 \bmod 4$ or $a b \equiv 1 \bmod 4$ and $\left[\eta_{n}, \eta_{n}\right]=0$ (this depends on n).

References

[1] I. M. James: Reduced product spaces. Ann. of Math., 62, 170-197 (1955).
[2] -: On the suspension triad. ibid., 63, 191-247 (1956).
[3] H. Takahashi: Homomorphisms from S^{3} to compact Lie groups up to homotopy (to appear in Bull. of Nagaoka Univ. of Tech., no. 11 (1990)).
[4] G. W. Whitehead: Elements of Homotopy Theory. Springer, G.T.M., 61 (1978).

