51. A Remark on a Class of Certain Analytic Functions

By Seiichi Fukui
Department of Mathematics, Wakayama University

(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1990)

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the unit disk $U=\{z ;|z|<1\}$.
A function $f(z) \in A$ is said to be a member of the class $S(\alpha)$ if it satisfies

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec 1+(1-\alpha) z \tag{2}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1)$ and for all $z \in U$. The symbol \prec denotes the subordination. It follows from (2) that if $f(z) \in S(\alpha)$ then $z f^{\prime}(z) / f(z)$ maps the unit disk U onto the domain which is inside the open disk centered at one with radius $1-\alpha$. From this fact, we see that $f(z) \in S(\alpha)$ if and only if

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1-\alpha \quad(z \in U) \tag{3}
\end{equation*}
$$

We easily see that the class $S(\alpha)$ is a subclass of $S^{*}(\alpha)$ known as starlike of order α.

In order to derive our main result, we have to recall here the following lemma due to Jack [1] (or Miller and Mocanu [2]).

Lemma. Let $w(z)$ be regular in the unit disk U with $w(0)=0$. If $|w(z)|$ attains its maximum value on the cercle $|z|=r$ at point z_{0}, then

$$
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)
$$

where k is real and $k \geqq 1$.
Applying the above lemma, we have
Main theorem. If $f(z) \in A$ satisfies

$$
\begin{equation*}
\left|\beta\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)+(1-\beta) \frac{z^{2} f^{\prime \prime}(z)}{f(z)}\right|<1-\alpha \quad(z \in U) \tag{4}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1), \beta(0 \leqq \beta<1)$, then $f(z) \in S(\alpha)$.
Proof. Defining the function $w(z)$ by

$$
\begin{equation*}
w(z)=\frac{1}{1-\alpha}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \tag{5}
\end{equation*}
$$

for $f(z) \in A$, we see that $w(z)$ is regular in the unit disk U and $w(0)=0$. Taking the logarithmic differentiations of both sides in (5), we have

$$
\begin{equation*}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=(1-\alpha) w(z)+\frac{(1-\alpha) z w^{\prime}(z)}{1+(1-\alpha) w(z)} \tag{6}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\left|\beta\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)+(1-\beta) \frac{z^{2} f^{\prime \prime}(z)}{f(z)}\right| \tag{7}
\end{equation*}
$$

$$
\begin{aligned}
& =\left|(1-\alpha) w(z)\left\{1+(1-\beta)(1-\alpha) w(z)+(1-\beta) \frac{z w^{\prime}(z)}{w(z)}\right\}\right| \\
& <1-\alpha
\end{aligned}
$$

Assume that there exist a point z_{0} such that

$$
\max _{|z| \leqq z_{0} \mid}|w(z)|=\left|w\left(z_{0}\right)\right|=1
$$

Then letting $w\left(z_{0}\right)=e^{i \theta}$ and using lemma, we obtain

$$
\begin{align*}
& \left|(1-\alpha) w\left(z_{0}\right)\left\{1+(1-\beta)(1-\alpha) w\left(z_{0}\right)+(1-\beta) \frac{z_{0} w^{\prime}\left(z_{0}\right)}{w\left(z_{0}\right)}\right\}\right| \tag{8}\\
& =(1-\alpha)\left|1+(1-\beta)\left(k+(1-\alpha) e^{i \theta}\right)\right| \\
& \quad \geqq 1-\alpha
\end{align*}
$$

which contradicts our condition (4). This implies that

$$
|w(z)|=\left|\frac{1}{1-\alpha}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right|<1 \quad(z \in U)
$$

that is,

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1-\alpha \quad(z \in U)
$$

Therefore, we complete the proof of our main theorem.
Taking $\beta=0$, we have
Corollary 1. If $f(z) \in A$ satisfies

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime \prime}(z)}{f(z)}\right|<1-\alpha \quad(z \in U) \tag{9}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1)$, then $f(z) \in S(\alpha)$.
Further making $\beta=\frac{1}{2}$, we have
Corollary 2. If $f(z) \in A$ satisfies

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1+\frac{z^{2} f^{\prime \prime}(z)}{f(z)}\right|<2(1-\alpha) \quad(z \in U) \tag{10}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1)$, then $f(z) \in S(\alpha)$.

References

[1] I. S. Jack: Functions starlike and convex of order α. J. London Math. Soc., 3, 469-474 (1971).
[2] S. S. Miller and P. T. Mocanu: Second order differential inequalities in complex plane. J. Math. Anal. Appl., 65, 289-305 (1978).

