46. Newforms of Half-integral Weight and the Twisting Operators

By Masaru Ueda
Department of Mathematics, Kyoto University
(Communicated by Kunihiko Kodaira, m. J. A., Sept. 12, 1990)

0. In the papers [4] and [5], we report some trace relations of the twisting operators on the space of cusp forms of half-integral weight $S(k+1 / 2, N, \chi)$ and on the Kohnen subspace $S(k+1 / 2, N, \chi)_{K}$. In this paper, we shall use these trace relations of the twisting operators in order to decompose the spaces $S(k+1 / 2, N, \chi)$ and $S(k+1 / 2, N, \chi)_{K}$ into nice subspaces, i.e., the space of "newforms" which correspond in one to one way to a system of eigen-values for Hecke operators. For simplicity of statements, we treat only the case of the Kohnen subspace of level $4 p^{m}$, weight $k+1 / 2$ and a character χ, where p is an odd prime number, $2 \leq m$ $\in Z, 2 \leq k \in Z$, and χ is an even character modulo $4 p^{m}$ such that $\chi^{2}=1$. More general results and details will appear in [6].
1. We keep to the notations and the assumptions in [4]. Let $\psi=\left(\frac{}{p}\right)$ be the quadratic residue symbol. Since the twisting operator R_{ψ} for ψ satisfies the identity $R_{\psi}^{3}=R_{\Downarrow}$ as operators, R_{\Downarrow} is a semi-simple operator and the eigen values of R_{ψ} are 1,0 , or -1 . We denote the σ-eigen subspace of $\tilde{S}=\tilde{S}\left(p^{m}, \chi\right)=S\left(k+1 / 2,4 p^{m}, \chi\right)_{K}, \sigma=0,1$, or -1 , by : $\tilde{S}^{0}=\tilde{S}^{0}\left(p^{m}, \chi\right)$ if $\sigma=0$ and $\tilde{S}^{ \pm}=\tilde{S}^{ \pm}\left(p^{m}, \chi\right)$ if $\sigma= \pm 1$. Then we have $\tilde{S}=\tilde{S}^{0} \oplus \tilde{S}^{+} \oplus \tilde{S}^{-}$and moreover

$$
\tilde{S}^{0}=\operatorname{Ker}\left(R_{\psi} \mid \tilde{S}\right)=\left[S\left(k+1 / 2,4 p^{m-1}, \chi\left(\frac{p}{}\right)\right)_{K}\right]^{(p)}
$$

Here, we put $\left[S\left(k+1 / 2,4 p^{m}, \chi\right)_{k}\right]^{(p)}=\left\{f(p z) \mid f \in S\left(k+1 / 2,4 p^{m}, \chi\right)_{K}\right\}$. This equality follows from the following lemma.

Lemma. Let N be a positive integer divisible by $4, \chi$ an even character modulo N, and l an odd prime divisor of N. If a function f on $\mathcal{S}_{\mathcal{L}}$ is satisfies the following two conditions:
(i) $f(z)=f(z+1)$ for all $z \in \mathfrak{S}$, (ii) $f(l z) \in S(k+1 / 2, N, \chi)$,
then we have

$$
f \in S\left(k+1 / 2, N / l, \chi\left(\frac{l}{}\right)\right) .
$$

In particular, if the conductor of $\chi\left(-\frac{l}{-}\right)$ does not divide N / l, then $f=0$.
Remark. This lemma is an analogy of the Theorem 4.6.4 of [1]. From $\tilde{T}\left(n^{2}\right) R_{\psi}=R_{\psi} \tilde{T}\left(n^{2}\right)$ ([5, Prop. (1.7)]), we have the following formulae:
(1) $\quad \operatorname{tr}\left(R_{\psi} \tilde{T}\left(n^{2}\right) \mid S\left(k+1 / 2,4 p^{m}, \chi\right)_{K}\right)$

$$
=\operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid \tilde{S}^{+}\left(p^{m}, \chi\right)\right)-\operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid \tilde{S}^{-}\left(p^{m}, \chi\right)\right),
$$

(2) $\quad \operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid S\left(k+1 / 2,4 p^{m}, \chi\right)_{K}\right)$

$$
=\operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid \tilde{S}^{0}\left(p^{m}, \chi\right)\right)+\operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid \tilde{S}^{+}\left(p^{m}, \chi\right)\right)+\operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid \tilde{S}^{-}\left(p^{m}, \chi\right)\right)
$$

and

$$
\begin{equation*}
\operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \left\lvert\, S\left(k+1 / 2,4 p^{n-1}, \chi\left(\frac{p}{}\right)\right)_{K}\right.\right)=\operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid \tilde{S}^{0}\left(p^{m}, \chi\right)\right) \tag{3}
\end{equation*}
$$

From [3, Theorem] and [4, Theorem], we can rewrite the left hand side of the formulae (1)-(3) as follows.

$$
\begin{gather*}
\operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid S\left(k+1 / 2,4 p^{m}, \chi\right)_{K}\right)-\operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid S\left(k+1 / 2,4 p^{m-1}, \chi(\underline{p})\right)_{K}\right) \tag{4}\\
=\operatorname{tr}\left(T(n) \mid S\left(2 k, p^{m}\right)\right)-\operatorname{tr}\left(T(n) \mid S\left(2 k, p^{m-1}\right)\right) \\
+\chi_{p}(-n) \operatorname{tr}\left(\left[W\left(p^{m}\right)\right]_{2 k} T(n) \mid S\left(2 k, p^{m}\right)\right)
\end{gather*}
$$

and
(5) $\quad \operatorname{tr}\left(R_{\psi} \tilde{T}\left(n^{2}\right) \mid S\left(k+1 / 2,4 p^{m}, \chi\right)_{K}\right)$

$$
=\left(\frac{-1}{p}\right)^{k} \chi_{p}(n) \operatorname{tr}\left(\left[W\left(p^{\tilde{m}}\right)\right]_{2 k} T(n) \mid S\left(2 k, p^{\tilde{m}}\right)\right)
$$

Here, $\hat{m}(\operatorname{resp} . \tilde{m})$ is the greatest even (resp. odd) integer x such that $x \leq m$.
Therefore, we have
(6)

$$
\begin{aligned}
2 \operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid \tilde{S}^{ \pm}\left(p^{m}, \chi\right)\right)= & \operatorname{tr}\left(T(n) \mid S\left(2 k, p^{m}\right)\right)-\operatorname{tr}\left(T(n) \mid S\left(2 k, p^{m-1}\right)\right) \\
& +\chi_{p}(-n) \operatorname{tr}\left(\left[W\left(p^{m}\right)\right]_{2 k} T(n) \mid S\left(2 k, p^{m}\right)\right) \\
& \pm\left(\frac{-1}{p}\right)^{k} \chi_{p}(n) \operatorname{tr}\left(\left[W\left(p^{\tilde{m}}\right)\right]_{2 k} T(n) \mid S\left(2 k, p^{\tilde{m}}\right)\right)
\end{aligned}
$$

2. For $i, j \in Z(2 \leq j<i), \tilde{S}^{ \pm}\left(p^{i}, \chi\right)$ contains $\tilde{S}^{ \pm}\left(p^{j}, \chi\right)$. Then for $m \geq 3$, we can define the orthogonal complement $\tilde{S}^{ \pm}\left(p^{m}, \chi\right)^{0}$ of $\tilde{S}^{ \pm}\left(p^{m-1}, \chi\right)$ in $\tilde{S}^{ \pm}\left(p^{n}, \chi\right)$.

Now, we know the following relation :

$$
\operatorname{tr}\left(\left[W\left(p^{m}\right)\right]_{2 k} T(n) \mid S\left(2 k, p^{m}\right)\right)=\sum_{a=0}^{[m / 2]} \operatorname{tr}\left(\left[W\left(p^{m-2 a}\right)\right]_{2 k} T(n) \mid S^{0}\left(2 k, p^{m-2 a}\right)\right)
$$

Here, $S^{0}\left(2 k, p^{m-2 a}\right)$ denotes the subspace of $S\left(2 k, p^{m-2 a}\right)$ spanned by all newforms in $S\left(2 k, p^{m-2 a}\right)$. From this relation, we have

Proposition. (7) For any odd integer $m \geq 3$, $\operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid \tilde{S}^{ \pm}\left(p^{m}, \chi\right)^{0}\right)$

$$
=\frac{1}{2}\left\{\operatorname{tr}\left(T(n) \mid S^{0}\left(2 k, p^{m}\right)\right) \pm\left(\frac{-1}{p}\right)^{k} \chi_{p}(n) \operatorname{tr}\left(\left[W\left(p^{m}\right)\right]_{2 k} T(n) \mid S^{0}\left(2 k, p^{m}\right)\right)\right\} .
$$

(8) For any even integer $m \geq 4$,

$$
\begin{aligned}
& \operatorname{tr}\left(\tilde{T}\left(n^{2}\right) \mid \tilde{S}^{ \pm}\left(p^{m}, \chi\right)^{0}\right) \\
& \quad=\frac{1}{2}\left\{\operatorname{tr}\left(T(n) \mid S^{0}\left(2 k, p^{m}\right)\right)+\chi_{p}(-n) \operatorname{tr}\left(\left[W\left(p^{m}\right)\right]_{2 k} T(n) \mid S^{0}\left(2 k, p^{m}\right)\right)\right\}
\end{aligned}
$$

For $m \geq 3$, we define (cf. [2])

$$
\begin{aligned}
S_{I}=S_{I}\left(2 k, p^{m}\right) & :=\left\{f \in S^{0}\left(2 k, p^{m}\right)|f| W=f, f|R W=f| R\right\}, \\
S_{I I}=S_{I I}\left(2 k, p^{m}\right) & :=\left\{f \in S^{0}\left(2 k, p^{m}\right)|f| W=f, f|R W=-f| R\right\}, \\
S_{I I \psi}=S_{I I}\left(2 k, p^{m}\right) & :=\left\{f \in S^{0}\left(2 k, p^{m}\right)|f| W=-f, f|R W=f| R\right\},
\end{aligned}
$$

$$
S_{I I I}=S_{I I I}\left(2 k, p^{m}\right):=\left\{f \in S^{0}\left(2 k, p^{m}\right)|f| W=-f, f|R W=-f| R\right\}
$$

where $R=R_{\psi}$ and $W=W\left(p^{m}\right)$.
We denote by $S^{0, \pm}\left(2 k, p^{m}\right) \pm 1$-eigen subspace of $S^{0}\left(2 k, p^{m}\right)$ on the operator W. Furthermore we denote by $H\left(p^{m}\right)$ the restricted Hecke algebra which is defined in [3, p. 543]. Then we have the following.

Theorem. For $m \geq 3$, we have the following isomorphisms as $H\left(p^{m}\right)$ modules.

$$
\begin{gather*}
\tilde{S}^{ \pm}\left(p^{m}, \chi\right)^{0} \cong S^{0, \pm}\left(\frac{-1}{p}\right)^{k}\left(2 k, p^{m}\right) \quad \text { if } \chi=\left(\frac{1}{}\right) \text { and } m \text { is odd. } \tag{9}\\
\tilde{S}^{ \pm}\left(p^{m}, \chi\right)^{0} \cong S^{0,+}\left(2 k, p^{m}\right) \quad \text { if } \chi=\left(\frac{1}{}\right) \text { and } m \text { is even. } \\
\tilde{S}^{ \pm}\left(p^{m}, \chi\right)^{0} \cong \frac{1}{2}\left(1 \pm\left(\frac{-1}{p}\right)^{k}\right)\left\{S_{I} \oplus S_{I I_{\psi}}\right\} \oplus \frac{1}{2}\left(1 \mp\left(\frac{-1}{p}\right)^{k}\right)\left\{S_{I I} \oplus S_{I I I}\right\}, \tag{11}\\
\text { if } \chi=\left(\frac{p}{p}\right) \text { and } m \text { is odd. } \\
\tilde{S}^{ \pm}\left(p^{m}, \chi\right)^{0} \cong \frac{1}{2}\left(1+\left(\frac{-1}{p}\right)\right)\left\{S_{I} \oplus S_{I I \psi}\right\} \oplus \frac{1}{2}\left(1-\left(\frac{-1}{p}\right)\right)\left\{S_{I I} \oplus S_{I I I}\right\}, \\
\text { if } \chi=\left(\frac{p}{}\right) \text { and } m \text { is even. }
\end{gather*}
$$

From these isomorphisms, we have a strong "multiplicity 1 theorem" for the space $\tilde{S}^{ \pm}\left(p^{m}, \chi\right)^{0}$.

We shall call the space $\tilde{S}^{ \pm}\left(p^{m}, \chi\right)^{0}$ the space of newforms in $S(k+1 / 2$, $\left.4 p^{m}, \chi\right)_{K}$. This naming is justified by the above theorem. We can define the space of "newforms" for more general case. See [6] for details.

References

[1] T. Miyake: Modular Forms. Springer (1989).
[2] H. Saito and M. Yamauchi: Trace formula of certain Hecke operators for $\Gamma_{0}\left(q^{\nu}\right)$. Nagoya Math. J., 76, 1-33 (1979).
[3] M. Ueda: The decomposition of the spaces of cusp forms of half-integral weight and trace formula of Hecke operators. J. Math. Kyoto Univ., 28, 505-555 (1988).
[4] -: Some trace relations of twisting operators on the spaces of cusp forms of half-integral weight (to appear in Proc. Japan Acad.).
[5] :- The trace formulae of twisting operators on the spaces of cusp forms of half-integral weight and some trace relations (to appear in Japanese J. of Math.).
[6] -: On twisting operators and newforms of half-integral weight (to appear).

