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Yang.Mills Connections on Quaternionic
Kihler Quotients
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(Communicated by Kunihiko KODAIRA, M. J. A., Oct. 12, 1990)

The purpose of this note is to a.nnounce our recent results on quater-
nionic Kthler manifolds (see Salamon [8] for definition of quaternionic
K/ihler manifolds). Let (M, g) be a 4n-dimensional connected qua.ternionic
Kthler ma.nifold with scalar curvature s and let H be the skew field of
qua.ternions (H=R+Ri+R]+ Rk). Furthermore, let p be an Sp(n) Sp(1)-
module induced by a.djoint representation of Sp(1). Then the vector bun-
dle V corresponding to p is a. subbundle in End (TM), whose rank is three.
The Levi-Civita connection induces a. metric connection on End (TM) natu-
rally. The subbundle V is preserved by the connection, which is restricted
to the connection on V, denoted by ft. For each point in M, there a.re local
frames I, J, K of V associated to i, ], k e p(1)H on a neighbourhood of
the point. We denote by w (a=I, J, K), 2-forms g(a, ) (a=I, J,K). Then
,,(R) defined locally can be globalized as a. section on M to
A2T*M(R)V, which is denoted by 2 e F(M,/2T*M(R)V) (cf. [2]).

Let G be a compact Lie group which acts on M preserving the quater-
nionic Kthler structure g, V. Let g be the Lie algebra of G.

Definition 1 (cf. [2], [5]). A section/ to *(R)V is a moment ma.pping
for the action of G on M if

(i) Iz(/(X))=x.2, where X is an element of a.nd X* is the Killing
vector field associated to X,

(ii) / is a G-equivariant ma.pping.
When the scalar curvature s of M is not zero and G is connected, the

moment mapping exists uniquely (see [2] for the proof). By the condition
(ii), the set/-(0) is G-invaria.nt. Suppose that Z-(0) is a. non-empty, sub-
manifold in M and that G acts on it freely. Then the quotient N=/-(0)/G
is a ma.nifold a.nd g, V are naturally pushed down to the metric y, the
structure bundle V on N. The reduction (N, y, V) is a quaternionic K/ihler

manifold of dimension 4m=4n--4dim (G) a.nd it is called a qua.ternionic
Kthler reduction (or hyperk/ihler reduction when s-0). Now we denote
by

79"/-(0) >N
the principal bundle, which has a. natural G-connection r a.s follows" the
horizontal space is the orthogonal complement to the fibre with respect
to g.

On the other hand, the Sp(m).Sp(1)-module /ZH is a direct sum
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NNL of its irreducible submodules N, N’, L, where N (resp. L) is
the submodule fixed by Sp(m) (resp. Sp(1)) and for m= 1, we have N’={0}.
Hence the vector bundle /T*N is written as a direct sum AAB of
its holonomy invariant subbundle in such a way that A, A’, B corre-
spond to N, N’, L, respectively.

Let q" Q-+N be a principal bundle whose fibre is a. Lie. group K ( "=

the Lie algebra).
Definition 2 (cf. [6]). A connection on q" Q-+N is called a. B-connec-

tion if the corresponding curvature is -valued q*B-form.
Now we obtain"
Theorem. The connection is a B-connection.
Proof. The space/-’(0) is a. submanifold in M. We denote the second

fundamental form by =. By definition the Levi-Civita. connection 7, on
/-’(0) is written as" for vector fields s, w e (/-’(0))
( 1 ) ’w ’,w+ (s, w),
where 7 is the Levi-Civita connection on (M, g). We denote by 2 and w,
the horizontal lift of x e :(N) and the vertical component of w e 2(t-’(0)),
i.e.

()=0, p,()= x,
(w-w)=0.

By O’Neill’s ormula (cf. [7]) for Riemannian submersion, i x, y e :(N),

( 2 ) /7y--72_ 1/212, )]’,
where is the Levi-Civita connection on N. Equations (1), (2) lead to

( 3 ) 17w Tf_(, )_1/2[, ].
For any point n e N, there exists a local neighbourhood n e UN such
that the quaternionic structure bundle on N is spanned by I, J, K on U.
When we exchange w to Iw

( 4 ) 7Iw= fTIw--(, Iw)--1/2[, Iw], on U.
I we denote by i, j, the pullback of I, J, K to TM on/2-(0), then

( 5 ) Iv=i.
Since M is a quaternionic Khler manifold,
( 6 )
where a, a are connection orms with respect to the local rame I, J, K.
We obtain by (4), (5), (6),

ivan2 +a()32+a()2
--17Iw-t-(, i)+ 1/2[, i],

and by (3),

(7) ig’’+i(, 2)+ 1/2iD, ]+a:()J2+a()
=gIw+(, i)+ 1/2[, i+].

The vertical component of (7) is
(i(, ))=1/2[, i].

Since is symmetric, we obtain"
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( 8 ) [, i]v-- 2(i(, ))v
2(i(, ))v

=[, i]"
=--[i, ].

The curvature of ] is written as R(, @)=--([, @]). By (8),

R(Is, Iw)-- -([Is, Iw]v)

7(-- [, IIw])
=-([, ])
R(, ).

By same argument, R(Is, Iw)= R(Js, Jw)= R(Ks, Kw)=R(, ). Hence the
connection V is a B-connection.

Examples. (i) Galicki and Lawson proved the reduction space
pH//U(1) is complex Grassmann manifold G2,_1(C) (cf. [2]). The connec-
tion on P-+G,,_(C) is a B-connection. Furthermore Galicki showed the
quotient space PH//SU(2) is real Grassmann manifold G4,n_3(R)(cf. [1]).
It has also a B-connection.

(ii) The argument is local. When Z-(0)/G is not a smooth manifold
but an orbifold, the connection is a B-connection over the orbifold.
Galicki and Nitta constructed many quaternionic Kihler orbifolds as
quaternionic Kiihler reduction spaces (cf. [4]). In these cases the connec-
tions are B-connections over the quaternionic Kiihler orbifolds.

Remark. A co.rresponding result for the case o2 hyperkihler reduc-
tions was previously obtained by Gocho and Nakajima [3]. Our result is
inspired by their result.
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