# 64. Yang-Mills Connections on Quaternionic Kähler Quotients 

By Takashi Nitta<br>Department of Mathematics, Osaka University<br>(Communicated by Kunihiko Kodara, m. J. A., Oct. 12, 1990)

The purpose of this note is to announce our recent results on quaternionic Kähler manifolds (see Salamon [8] for definition of quaternionic Kähler manifolds). Let ( $M, g$ ) be a $4 n$-dimensional connected quaternionic Kähler manifold with scalar curvature $s$ and let $\boldsymbol{H}$ be the skew field of quaternions $(\boldsymbol{H}=\boldsymbol{R}+\boldsymbol{R} i+\boldsymbol{R} j+\boldsymbol{R} k)$. Furthermore, let $\rho$ be an $S p(n) \cdot S p(1)$ module induced by adjoint representation of $S p(1)$. Then the vector bundle $V$ corresponding to $\rho$ is a subbundle in End (TM), whose rank is three. The Levi-Civita connection induces a metric connection on End (TM) naturally. The subbundle $V$ is preserved by the connection, which is restricted to the connection on $V$, denoted by $V$. For each point in $M$, there are local frames $I, J, K$ of $V$ associated to $i, j, k \in \mathfrak{z p}(1) \subset \boldsymbol{H}$ on a neighbourhood of the point. We denote by $\omega_{\alpha}(\alpha=I, J, K), 2$-forms $g(\alpha),(\alpha=I, J, K)$. Then $\sum_{\alpha \in I, J, K} \omega_{\alpha} \otimes \alpha$ defined locally can be globalized as a section on $M$ to $\wedge^{2} T^{*} M \otimes V$, which is denoted by $\Omega \in \Gamma\left(M, \wedge^{2} T^{*} M \otimes V\right)$ (cf. [2]).

Let $G$ be a compact Lie group which acts on $M$ preserving the quaternionic Kähler structure $g, V$. Let $g$ be the Lie algebra of $G$.

Definition 1 (cf. [2], [5]). A section $\mu$ to $\mathfrak{g}^{*} \otimes V$ is a moment mapping for the action of $G$ on $M$ if
(i) $\nabla(\mu(X))=\iota_{X}{ }^{*} \Omega$, where $X$ is an element of and $X^{*}$ is the Killing vector field associated to $X$,
(ii) $\mu$ is a $G$-equivariant mapping.

When the scalar curvature $s$ of $M$ is not zero and $G$ is connected, the moment mapping exists uniquely (see [2] for the proof). By the condition (ii), the set $\mu^{-1}(0)$ is $G$-invariant. Suppose that $\mu^{-1}(0)$ is a non-empty, submanifold in $M$ and that $G$ acts on it freely. Then the quotient $N=\mu^{-1}(0) / G$ is a manifold and $g, V$ are naturally pushed down to the metric $\bar{g}$, the structure bundle $\bar{V}$ on $N$. The reduction $(N, \bar{g}, \bar{V})$ is a quaternionic Kähler manifold of dimension $4 m=4 n-4 \operatorname{dim}(G)$ and it is called a quaternionic Kähler reduction (or hyperkähler reduction when $s=0$ ). Now we denote by

$$
p: \mu^{-1}(0) \longrightarrow N
$$

the principal bundle, which has a natural $G$-connection $\eta$ as follows: the horizontal space is the orthogonal complement to the fibre with respect to $g$.

On the other hand, the $S p(m) \cdot S p(1)$-module $\wedge^{2} H^{m}$ is a direct sum
$N_{2}^{\prime} \oplus N_{2}^{\prime \prime} \oplus L_{2}$ of its irreducible submodules $N_{2}^{\prime}, N_{2}^{\prime \prime}, L_{2}$, where $N_{2}^{\prime}$ (resp. $L_{2}$ ) is the submodule fixed by $S p(m)$ (resp. $S p(1)$ ) and for $m=1$, we have $N_{2}^{\prime \prime}=\{0\}$. Hence the vector bundle $\wedge^{2} T^{*} N$ is written as a direct sum $A_{2}^{\prime} \oplus A_{2}^{\prime \prime} \oplus B_{2}$ of its holonomy invariant subbundle in such a way that $A_{2}^{\prime}, A_{2}^{\prime \prime}, B_{2}$ correspond to $N_{2}^{\prime}, N_{2}^{\prime \prime}, L_{2}$, respectively.

Let $q: Q \rightarrow N$ be a principal bundle whose fibre is a Lie group $K(f:=$ the Lie algebra).

Definition 2 (cf. [6]). A connection on $q: Q \rightarrow N$ is called a $B_{2}$-connection if the corresponding curvature is $\mathfrak{f}$-valued $q^{*} B_{2}$-form.

Now we obtain:
Theorem. The connection $\eta$ is a $B_{2}$-connection.
Proof. The space $\mu^{-1}(0)$ is a submanifold in $M$. We denote the second fundamental form by $\pi$. By definition the Levi-Civita connection $\nabla_{1}$ on $\mu^{-1}(0)$ is written as: for vector fields $s, w \in \mathscr{X}\left(\mu^{-1}(0)\right)$

$$
\begin{equation*}
\nabla_{s}^{M} w=\nabla_{1 s} w+\pi(s, w), \tag{1}
\end{equation*}
$$

where $\nabla^{M}$ is the Levi-Civita connection on $(M, g)$. We denote by $\tilde{x}$ and $w^{v}$, the horizontal lift of $x \in \mathscr{X}(N)$ and the vertical component of $w \in \mathscr{X}\left(\mu^{-1}(0)\right)$, i.e.

$$
\begin{aligned}
& \eta(\tilde{x})=0, \quad p_{*}(\tilde{x})=x, \\
& \eta\left(w-w^{v}\right)=0 .
\end{aligned}
$$

By O'Neill's formula (cf. [7]) for Riemannian submersion, if $x, y \in \mathfrak{X}(N)$,

$$
\begin{equation*}
\widetilde{\nabla_{x}^{N} y}=\nabla_{1 x} \tilde{y}-1 / 2[\tilde{x}, \tilde{y}]^{v}, \tag{2}
\end{equation*}
$$

where $\nabla^{N}$ is the Levi-Civita connection on $N$. Equations (1), (2) lead to

$$
\begin{equation*}
\widetilde{\nabla_{s}^{N} w}=\nabla_{\tilde{s}}^{M} \tilde{w}-\pi(\tilde{s}, \tilde{w})-1 / 2[\tilde{s}, \tilde{w}]^{v} \tag{3}
\end{equation*}
$$

For any point $n \in N$, there exists a local neighbourhood $n \in U \subset N$ such that the quaternionic structure bundle on $N$ is spanned by $I, J, K$ on $U$. When we exchange $w$ to $I w$

$$
\begin{equation*}
\widetilde{\nabla_{s}^{N} I w}=\nabla_{\tilde{s}}^{M} \widetilde{[w}-\pi(\tilde{s}, \tilde{I w})-1 / 2[\tilde{s}, \tilde{I w}]^{v}, \quad \text { on } U \tag{4}
\end{equation*}
$$

If we denote by $\bar{I}, \bar{J}, \bar{K}$ the pullback of $I, J, K$ to $T M$ on $\mu^{-1}(0)$, then

$$
\begin{equation*}
\tilde{I} \tilde{w}=\bar{I} \tilde{w} . \tag{5}
\end{equation*}
$$

Since $M$ is a quaternionic Kähler manifold,

$$
\begin{equation*}
\nabla^{M} \bar{I}=a_{12} \bar{J}+a_{13} \bar{K}, \tag{6}
\end{equation*}
$$

where $a_{12}, a_{13}$ are connection forms with respect to the local frame $I, J, K$. We obtain by (4), (5), (6),

$$
\begin{aligned}
& \overline{\bar{I}} \nabla_{\bar{s}}^{M} \tilde{w}+a_{12}(\tilde{s}) \tilde{J} \tilde{w}+a_{13}(\tilde{s}) \bar{K} \tilde{w} \\
& \quad=\overparen{\nabla_{s}^{N} I w}+\pi(\tilde{s}, \bar{I} \tilde{w})+1 / 2[\tilde{s}, \bar{I} \tilde{w}]^{v},
\end{aligned}
$$

and by (3),

$$
\begin{align*}
& \bar{I}{V_{s}^{N} w}^{w}+\bar{I} \pi(\tilde{s}, \tilde{w})+1 / 2 \bar{I}[\tilde{s}, \tilde{w}]^{v}+a_{12}(\tilde{s}) \bar{J} \tilde{w}+a_{13}(\tilde{s}) \bar{K} \tilde{w}  \tag{7}\\
& =\overparen{V}_{s}^{N} I w+\pi(\tilde{s}, \bar{I} \tilde{w})+1 / 2[\tilde{s}, \bar{I} \tilde{w}]^{v} .
\end{align*}
$$

The vertical component of (7) is

$$
(\overline{\bar{I}} \pi(\tilde{s}, \tilde{w}))^{v}=1 / 2[\tilde{s}, \bar{I} \tilde{w}]^{v} .
$$

Since $\pi$ is symmetric, we obtain:

$$
\begin{align*}
{[\tilde{s}, \bar{I} \tilde{w}]^{v} } & =2(\bar{I} \pi \pi \tilde{s}, \tilde{w}))^{v} \\
& =2(\bar{I} \pi(\tilde{w}, \tilde{s}))^{v} \\
& =[\tilde{w}, \bar{I} \tilde{s}]^{v} \\
& =-[\bar{I} \tilde{s}, \tilde{w}]^{v} .
\end{align*}
$$

The curvature of $\eta$ is written as $R(\tilde{s}, \tilde{w})=-\eta\left([\tilde{s}, \tilde{w}]^{v}\right)$. By (8),

$$
\begin{aligned}
R(\widetilde{I s}, \widetilde{I w}) & =-\eta\left(\left[\widetilde{I s}, \widetilde{w_{w}}\right]^{v}\right) \\
& =-\eta\left(-[\tilde{s}, \widetilde{I} w]^{v}\right) \\
& =-\eta\left([\tilde{s}, \tilde{w}]^{v}\right) \\
& =R(\tilde{s}, \tilde{w}) .
\end{aligned}
$$

By same argument, $R(\widetilde{I s s}, \widetilde{I w})=R(\widetilde{J s}, \widetilde{J w})=R(\widetilde{K s}, \widetilde{K w})=R(\tilde{s}, \tilde{w})$. Hence the connection $\eta$ is a $B_{2}$-connection.

Examples. (i) Galicki and Lawson proved the reduction space $p^{n} \boldsymbol{H} / / U(1)$ is complex Grassmann manifold $G_{2, n-1}(C)$ (cf. [2]). The connection on $P \rightarrow G_{2, n-1}(C)$ is a $B_{2}$-connection. Furthermore Galicki showed the quotient space $P^{n} \boldsymbol{H} / / S U(2)$ is real Grassmann manifold $G_{4, n-3}(R)$ (cf. [1]). It has also a $B_{2}$-connection.
(ii) The argument is local. When $\mu^{-1}(0) / G$ is not a smooth manifold but an orbifold, the connection is a $B_{2}$-connection over the orbifold. Galicki and Nitta constructed many quaternionic Kähler orbifolds as quaternionic Kähler reduction spaces (cf. [4]). In these cases the connections are $B_{2}$-connections over the quaternionic Kähler orbifolds.

Remark. A corresponding result for the case of hyperkähler reductions was previously obtained by Gocho and Nakajima [3]. Our result is inspired by their result.

Acknowledgements. The author would like to thank Professors Pedersen and Nakajima for their encouragement. The work is done in my stay in Max-Planck-Institut für Mathematik in Bonn.

## References

[1] K. Galicki: A generalization of the momentum mapping construction for quaternionic Kähler manifolds. Commun. Math. Phys., 108, 117-138 (1987).
[2] K. Galicki and H. B. Lawson, Jr.: Quaternionic reduction and quaternionic orbifolds. Math. Ann., 282, 1-21 (1988).
[3] T. Gocho and H. Nakajima: Einstein-Hermitian connections on hyperkähler quotients (to appear).
[4] K. Galicki and T. Nitta: Non-zero scalar curvature generalizations of the ALE hyperkähler metrics (to appear).
[5] N. J. Hitchin et al.: Hyperkähler metrics and supersymmetry. Comm. Math. Phys., 108, 535-589 (1987).
[6] T. Nitta: Vector bundles over quaternionic Kähler manifolds. Tohoku Math. J., 40, 425-440 (1988).
[7] B. O'Neill: The fundamental equations of submersion. Michigan Math. J., 13, 459-469 (1966).
[8] S. Salamon: Quaternionic Kähler manifolds. Invent. Math., 67, 143-171 (1982).

