76. On a Theorem of Landau. II

By Akio Fujir
Department of Mathematics, Rikkyo University
(Communicated by Shokichi Iyanaga, m. J. A., Nov. 9, 1990)

§ 1. Introduction. Let $\rho=\beta+i \gamma$ run over the non-trivial zeros of the Riemann zeta function $\zeta(s)$. Landau [9] showed that for fixed $x>1$

$$
\sum_{0<r \leq T} x^{\rho}=-\frac{T}{2 \pi} \Lambda(x)+O(\log T)
$$

where we put $\Lambda(x)=\log p$ if $x=p^{k}$ with a prime number p and a positive integer k, and $=0$ otherwise. In [4], the author has refined this under the Riemann Hypothesis (R.H.) as follows.

$$
\sum_{0<r \leq T} x^{\frac{1}{2}+i r}=-\frac{T}{2 \pi} \Lambda(x)+\frac{x^{\frac{1}{3}+i T} \log (T / 2 \pi)}{2 \pi i \log x}+O\left(\frac{\log T}{\log \log T}\right) .
$$

Here we shall refine this further. It T is not the ordinate of a zero of $\zeta(s)$, let $S(T)$ denote the value of

$$
\frac{1}{\pi} \arg \zeta\left(\frac{1}{2}+i T\right)
$$

obtained by continuous variation along the straight lines joining $2,2+i T$, $\frac{1}{2}+i T$, starting with the value 0 . If T is the ordinate of a zero, let $S(T)=S(T+0)$. We shall prove the following theorem.

Theorem 1 (Under R.H.). For fixed $x>1$ and $T>T_{0}$, we have

$$
\sum_{0<r \leq T} x^{i r}=-\frac{T}{2 \pi} \frac{\Lambda(x)}{\sqrt{x}}+\frac{x^{i T} \log (T / 2 \pi)}{2 \pi i \log x}+x^{i T} S(T)+O\left(\frac{\log T}{(\log \log T)^{2}}\right)
$$

We know that $S(T) \ll(\log T / \log \log T)$ under R.H. and that the normal order of $S(T)$ is $(1 / 2 \pi) \sqrt{\log \log T}$. Hence the third term of the right hand side in the above formula might be reduced in the remainder term.

The dependence on x in Landau's theorem is also important and has been studied by Gonek [7], [8] and Fujii [3], for example. Here we shall refine, under R.H., our previous results in [3] as follows.

Theorem 2 (Under R.H.). For $x>1$ and $T>T_{0}$, we have

$$
\begin{aligned}
\sum_{0<r \leq T} x^{i r}= & -\frac{T}{2 \pi} \frac{\Lambda(x)}{\sqrt{x}}+M(x, T)+x^{i T} S(T)+O(B(x, T)) \\
& +O\left(\operatorname { M i n } \left\{\sqrt{x} \log x \cdot \frac{\log T}{(\log \log T)^{2}}, \sqrt{x} \log (2 x)\right.\right. \\
& +x^{1 / \log \log T} \frac{\log T}{\log ((\log T / x)+2)} \\
& +\sqrt{x} \sqrt{\left.\left.\frac{\log T}{\log \log T} \frac{1}{\log ((x / \log T \cdot \log \log T)+2)}\right\}\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
M(x, T) & \equiv \frac{1}{2 \pi} \int_{1}^{T} x^{i t} \log \left(\frac{t}{2 \pi}\right) d t \\
& = \begin{cases}\frac{x^{i T} \log (T / 2 \pi)}{2 \pi i \log x}+O\left(\frac{1}{\log x}+\frac{1}{\log ^{2} x}\right) & \text { if } \frac{1}{\log T} \ll \log x \\
O\left(\operatorname{Min}\left(\frac{\log T}{\log x}, T \log T\right)\right) & \text { if } \log x \ll \frac{1}{\log T}\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
B(x, T) & \equiv \frac{1}{\sqrt{x}} \sum_{\substack{x / 2<k<x<2 x \\
k \neq x}} \Lambda(k) \operatorname{Min}\left(T, \frac{1}{|\log (x / k)|}\right) \\
& =O\left(\frac{\log (2 x)}{\sqrt{x}} \operatorname{Min}\left(T, \frac{x}{\langle x\rangle}\right)\right)+O(\sqrt{x} \log (3 x) \log \log (3 x)),
\end{aligned}
$$

$\langle x\rangle$ being the distance from x to the nearest prime power other than x itself.

In some problems it is desirable to get an evaluation of the above sum without using any unproved hypothesis. Here we notice the following theorem.

Theorem 3. Suppose that for $\sigma \geq \frac{1}{2}$, a positive constant θ satisfies

$$
|\{\rho=\beta+i \gamma ; 0<\gamma<T, \beta>\sigma\}| \ll T \log T \cdot e^{-\left(\sigma-\frac{1}{2}\right) \theta \log \Gamma} .
$$

Then for $1<x \ll T^{\min (2, \theta)-\varepsilon}$ and $\varepsilon>0$,

$$
\sum_{0<r \leq T} x^{i r} \ll T \log x+\operatorname{Min}\left(\frac{\log T}{\log x}, T \log T\right) .
$$

We may take $\theta=\frac{8}{7}-\varepsilon, \varepsilon>0$, by Conrey's improvement [1] of Selberg's density theorem in [10].

We shall prove Theorems 1 and 2 using our previous arguments in [3]. The present improvement comes mainly from the following theorem which is an improvement of p. 529 of [2].

Theorem 4 (Under R.H.). For $T>T_{0}$,

$$
\int_{\frac{z}{2}}^{2}|\log \zeta(\sigma+i T)| d \sigma \ll \frac{\log T}{(\log \log T)^{2}} .
$$

§2. Proof of Theorem 4. We assume the Riemann Hypothesis in this section. We put $Y=\log T$ and $\sigma_{1}=\frac{1}{2}+\frac{1}{\log Y}$. We notice first that

$$
\begin{aligned}
\int_{1 / 2}^{\sigma_{1}} & |\log \zeta(\sigma+i T)| d \sigma \\
\quad= & \int_{1 / 2}^{\sigma_{1}}\left|A \frac{\log T}{\log \log T}-\log \right| \zeta(\sigma+i T)\left|-i \arg \zeta(\sigma+i T)-A \frac{\log T}{\log \log T}\right| d \sigma \\
& \leq \int_{1 / 2}^{\sigma_{1}}\left(A \frac{\log T}{\log \log T}-\log |\zeta(\sigma+i T)|\right) d \sigma \\
& +\int_{1 / 2}^{\sigma_{1}}|\arg \zeta(\sigma+i T)| d \sigma+A \frac{\log T}{(\log \log T)^{2}}
\end{aligned}
$$

since it is known (cf. p. 300 of Titchmarsh [11]) that with a positive constant A,

$$
\log |\zeta(\sigma+i T)| \leq A \frac{\log T}{\log \log T} \quad \text { for } \frac{1}{2} \leq \sigma \leq \sigma_{1}
$$

Since, by 14.13.6 and 14.14.3 of Titchmarsh [11],

$$
\int_{1 / 2}^{\sigma_{1}} \log |\zeta(\sigma+i T)| d \sigma \ll \frac{\log T}{(\log \log T)^{2}}
$$

and

$$
\arg \zeta(\sigma+i T) \ll \frac{\log T}{\log \log T} \quad \text { for } \frac{1}{2} \leq \sigma \leq \sigma_{1}
$$

we see that

$$
\int_{1 / 2}^{\sigma_{1}}|\log \zeta(\sigma+i T)| d \sigma \ll \frac{\log T}{(\log \log T)^{2}} .
$$

We next treat the integral over the interval $\sigma_{1} \leq \sigma \leq 2$. Applying Selberg's expression (cf. 14.21.4 of [11])

$$
\frac{\zeta^{\prime}}{\zeta}(\sigma+i T)=-\sum_{n<Y^{2}} \frac{\Lambda_{Y}(n)}{n^{\sigma+i T}}+O\left(\left.Y^{(1 / 2)-\sigma}\right|_{n<Y^{2}} \frac{\Lambda_{Y}(n)}{n^{\sigma_{1}+i T}}\right)+O\left(Y^{(1 / 2)-\sigma} \log T\right)
$$

we get first

$$
\begin{aligned}
& \log \zeta(\sigma+i T)=-\int_{\sigma}^{2} \frac{\zeta^{\prime}}{\zeta}(\sigma+i T) d \sigma+\log \zeta(2+i T) \\
& \quad=\sum_{n<Y^{2}} \frac{\Lambda_{Y}(n)}{n^{\sigma+i T} \log n}+O\left(\left.\frac{Y^{(1 / 2)-\sigma}}{\log Y}\right|_{n<Y^{2}} \frac{\Lambda_{Y}(n)}{n^{\sigma_{1}+i T}}\right)+O\left(\frac{Y^{(1 / 2)-\sigma}}{\log Y} \log T\right)+O(1),
\end{aligned}
$$

where we put

$$
\Lambda_{Y}(n)= \begin{cases}\Lambda(n) & \text { for } 1 \leq n \leq Y \\ \Lambda(n) \frac{\log \left(Y^{2} / n\right)}{\log Y} & \text { for } Y \leq n \leq Y^{2}\end{cases}
$$

Using this we get

$$
\begin{aligned}
\int_{\sigma_{1}}^{2}|\log \zeta(\sigma+i T)| d \sigma & \ll \sum_{n<Y^{2}} \frac{\Lambda_{Y}(n)}{n^{\sigma_{1}} \log ^{2} n}+\frac{1}{\log ^{2} Y} \sum_{n<Y^{2}} \frac{\Lambda_{Y}(n)}{n^{\sigma_{1}}}+\frac{\log T}{\log ^{2} Y} \\
& \ll \sum_{n<Y^{2}} \frac{\Lambda(n)}{\sqrt{n} \log ^{2} n}+\frac{\log T}{\log ^{2} Y} \ll \frac{\log T}{(\log \log T)^{2}} .
\end{aligned}
$$

Combining the above two estimates, we get our theorem.
§3. Proof of Theorems 1 and 2. We assume the Riemann Hypothesis in this section. We shall follow the arguments in pp. 52-54 of [3] and omit some of the details.

$$
\begin{aligned}
& \sum_{0<r \leq T} x^{i \gamma}=M(x, T)-i \log x \cdot \int_{C}^{T} \cos (t \log x) S(t) d t \\
& \quad+\log x \cdot \int_{C}^{T} \sin (t \log x) S(t) d t+x^{i T} S(T)+O(1)
\end{aligned}
$$

where C is some positive constant.
We put $\delta=\frac{1}{\log (9 x)}$. Then we get

$$
\begin{aligned}
\int_{C}^{T} & \cos (t \log x) S(t) d t \\
& \left.=\mathfrak{F}\left\{\frac{1}{\pi i}\left(\int_{1+\delta+i C}^{1+\delta+i T}-\int_{(1 / 2)+i T}^{1+\delta+i T}+\int_{(1 / 2)+i C}^{1+\delta+i C}\right) \cos \left(-i\left(z-\frac{1}{2}\right) \log x\right) \log \zeta(z) d z\right)\right\} \\
& =\mathfrak{J}\left\{\frac{1}{\pi i}\left(S_{1}+S_{2}+S_{3}\right)\right\}, \text { say. }
\end{aligned}
$$

A direct application of the above Theorem 4 yields

$$
\log x \cdot S_{2} \ll \sqrt{x} \log x \cdot \int_{1 / 2}^{1+\delta}|\log \zeta(\sigma+i T)| d \sigma \ll \sqrt{x} \log x \cdot \frac{\log T}{(\log \log T)^{2}}
$$

We shall improve the dependence on x a little bit as follows. We put

$$
W=\log T \text { if } x<\frac{1}{2} \log T \text { and }=\log T \log \log T \text { if } x \geq \frac{1}{2} \log T .
$$

We put further $\sigma_{1}=\frac{1}{2}+\frac{1}{\log W}$. Then

$$
\begin{aligned}
\log x \cdot S_{2} & \ll \log x \cdot\left|\int_{1 / 2}^{1+\delta} x^{\sigma-(1 / 2)} \log \zeta(\sigma+i T) d \sigma\right|+\log x \cdot \frac{\log T}{(\log \log T)^{2}} \\
& \ll \sqrt{x}|\log \zeta(1+\delta+i T)|+x^{\sigma_{1}-(1 / 2)}\left|\log \zeta\left(\sigma_{1}+i T\right)\right| \\
& +x^{\sigma_{1}-(1 / 2)} \cdot \log x \cdot \frac{\log T}{(\log \log T)^{2}}+\left|\int_{\sigma_{1}}^{1+\delta} x^{\sigma-(1 / 2)} \frac{\zeta^{\prime}}{\zeta}(\sigma+i T) d \sigma\right| \\
& \ll \sqrt{x} \log \log (3 x)+x^{\sigma_{1}-(1 / 2)}\left(\frac{\log T}{\log \log T}+\log x \cdot \frac{\log T}{(\log \log T)^{2}}\right) \\
& +\left\lvert\, \int_{\sigma_{1}}^{1+\delta} x^{\sigma-(1 / 2)} \frac{\zeta^{\prime}}{\zeta}(\sigma+i T) d \sigma .\right.
\end{aligned}
$$

Using Selberg's expression of $\frac{\zeta^{\prime}}{\zeta}(\sigma+i T)$ as used in the previous section, the last integral is

$$
\begin{aligned}
&=-\int_{\sigma_{1}}^{1+\delta} x^{\sigma-(1 / 2)} \sum_{n<W^{2}} \frac{\Lambda_{W}(n)}{n^{\sigma+i T}} d \sigma+0\left(\left|\sum_{n<W^{2}} \frac{\Lambda_{W}(n)}{n^{\sigma_{1}+i T}}\right| \int_{\sigma_{1}}^{1+\delta} x^{\sigma-(1 / 2)} W^{(1 / 2)-\sigma} d \sigma\right) \\
&+O\left(\log T \cdot \int_{\sigma_{1}}^{1+\delta} x^{\sigma-(1 / 2)} W^{(1 / 2)-\sigma} d \sigma\right) \\
& \ll \sum_{n<W^{2}} \Lambda_{W}(n) x^{-(1 / 2)} \int_{\sigma_{1}}^{1+\delta}\left(\frac{x}{n}\right)^{\sigma} d \sigma+\sum_{n<W^{2}} \frac{\Lambda_{W}(n)}{n^{\sigma_{1}}} \sqrt{\frac{W}{x}} \int_{\sigma_{1}}^{1+\delta}\left(\frac{x}{W}\right)^{\sigma} d \sigma \\
&+\log T \cdot \sqrt{\frac{W}{x}} \int_{\sigma_{1}}^{1+\delta}\left(\frac{x}{W}\right)^{\sigma} d \sigma \\
&= \Sigma_{1}+\Sigma_{2}+\sum_{3}, \text { say. } \\
& \Sigma_{1} \ll \sqrt{x} \log (3 x)+x^{\sigma_{1}-(1 / 2)}\left\{\sum_{n<W} \frac{\Lambda(n)}{n^{\sigma_{1}}}+\sum_{W<n \leq W^{2}} \frac{\Lambda(n)}{n^{\sigma_{1}}} \frac{\log \left(W^{2} / n\right)}{\log W}\right\} \\
& \ll \sqrt{x} \log (3 x)+x^{\sigma_{1}-(1 / 2)} \frac{W}{\log W} . \\
& \Sigma_{2}+\Sigma_{3} \ll \begin{cases}\frac{\sqrt{x} W^{(1 / 2)-\delta}}{\log W \cdot \log (x / W)}+\log T \sqrt{x} \cdot \frac{W^{-(1 / 2)-\delta}}{\log (x / W)} & \text { if } x \geq 2 W \\
\frac{W}{\log W}+\log T & \text { if } \frac{W}{2} \leq x \leq 2 ل \\
\frac{x^{\sigma_{1}-(1 / 2)} W}{\log W \cdot \log (W / x)}+\frac{x^{\sigma_{1}-(1 / 2)} \log T}{\log (W / x)} & \text { if } x \leq \frac{1}{2} W .\end{cases}
\end{aligned}
$$

Hence, we get for $x>1$,
$\log x \cdot S_{2} \ll \operatorname{Min}\left\{\sqrt{x} \log x \cdot \frac{\log T}{(\log \log T)^{2}}, \sqrt{x} \log (2 x)+x^{1 / \log \log T}\right.$

$$
\left.\times \frac{\log T}{\log ((\log T / x)+2)}+\sqrt{x} \sqrt{\frac{\log T}{\log \log T}} \frac{1}{\log ((x / \log T \cdot \log \log T)+2)}\right\} .
$$

We get the same upper bound for $\log x \cdot S_{3}$.
As in p. 54 of [3], we get

$$
\log x \cdot S_{1}=\frac{i}{2} T \frac{A(x)}{\sqrt{x}}+O(B(x, T))+O(\sqrt{x} \log \log (3 x))
$$

where $B(x, T)$ is defined in the statement of Theorem 2.
In a similar manner, we can treat the integral $\int_{C}^{T} \sin (t \log x) S(t) d t$ and get our assertions as described in Theorem 2, and hence those in Theorem 1.
§4. Proof of Theorem 3. We do not assume R.H. in this section. As in the previous section, we get

$$
\begin{aligned}
\sum_{0<r \leq T} x^{i r}= & M(x, T)-i \log x \cdot \int_{C}^{T} \cos (t \log x) S(t) d t \\
& +\log x \cdot \int_{C}^{T} \sin (t \log x) S(t) d t+O(\log T) \\
= & M(x, T)-i \log x \cdot U_{1}+\log x \cdot U_{2}+O(\log T), \text { say. }
\end{aligned}
$$

We put $\delta=\frac{1}{\log (9 x)}$. Then as in p. 104 of [4], we get

$$
\begin{aligned}
U_{1} & \left.=\mathfrak{F}\left(\frac{1}{\pi i}\left(\int_{1+\delta+i C}^{1+\delta+i T}-\int_{(1 / 2)+i T}^{1+\delta+i T}+\int_{(1 / 2)+i C}^{1+\delta+i C}\right) \cos \left(-i\left(z-\frac{1}{2}\right) \log x\right) \log \zeta(z) d z+R_{1}\right)\right) \\
& =\mathfrak{J}\left(\frac{1}{\pi i}\left(U_{3}+U_{4}+U_{5}+R_{1}\right)\right), \text { say }
\end{aligned}
$$

where we put

$$
R_{1}=2 \pi i \sum_{\beta>(1 / 2), 0<r<T} \int_{(1 / 2)+i_{r}}^{\beta+i_{r}} \cos \left(-i\left(z-\frac{1}{2}\right) \log x\right) d z .
$$

By our assumption, we get

$$
\begin{gathered}
R_{1} \ll \sum_{\beta>(1 / 2), 0<r<T} \int_{1 / 2}^{\beta} x^{\sigma-(1 / 2)} d \sigma \ll \int_{1 / 2}^{1} \sum_{\beta>0,0<r<T} x^{\sigma-(1 / 2)} d \sigma \\
\ll T \log T \int_{1 / 2}^{1} e^{-\theta(\sigma-(1 / 2)) \log T+(\sigma-(1 / 2) \log x} d \sigma \ll T . \\
U_{4} \ll \sqrt{x} \int_{1 / 2}^{1+\delta}|\log \zeta(\sigma+i T)| d \sigma \ll \sqrt{x} \log T . \\
U_{5} \ll \sqrt{x} . \\
U_{3}=\frac{i}{2} x^{(1 / 2)+\delta} \sum_{n=2}^{\infty} \frac{\Lambda(n)}{n^{1+\delta} \log n} \int_{C}^{T}\left(\frac{x}{n}\right)^{i t} d t+\frac{i}{2} x^{-((1 / 2)+\delta)} \sum_{n=2}^{\infty} \frac{\Lambda(n)}{n^{1+\delta} \log n} \int_{C}^{T}\left(\frac{1}{n x}\right)^{i t} d t \\
\ll T \frac{\Lambda(x)}{\sqrt{x} \log x}+\frac{\sqrt{x} \log \log (3 x)}{\log (2 x)}+\frac{1}{\log (2 x)} B(x, T),
\end{gathered}
$$

where $B(x, T)$ is the same as above.

Thus we get
$\log x \cdot U_{1} \ll T \log x+\sqrt{x} \log x \log T+B(x, T)$.
U_{2} can be estimated similarly. Since

$$
B(x, T) \ll T \log x+1,
$$

we get our assertion as stated in Theorem 3.

§5. Concluding remarks. 5-1. Since

$$
x^{-(1 / 2)} \sum_{r \leq T} x^{\rho}-\sum_{r \leq T} x^{i r}=\log x \int_{1 / 2}^{1}\left(\sum_{r \leq T, \beta>\sigma} x^{i r}\right) x^{\sigma-(1 / 2)} d \sigma \ll T \log x,
$$

we get another proof of Theorem 3, by applying Gonek's estimate on $\sum_{r \leq T} x^{\rho}$ in [7] and [8].

5-2. Some of the theorems announced in [5] can be improved since we have used the arguments in [3], which are now improved. For example, Theorem 3 of [5] for a fixed x can be improved as follows.

Theorem (Under R.H.). For any $x>1$ and $T>T_{0}$, we have

$$
\sum_{\substack{0<\gamma, r^{\prime} \leq T \\ \gamma+\gamma^{\prime} \leq T}} x^{i\left(\gamma+\gamma^{\prime}\right)}=\frac{1}{8 \pi^{2}} \frac{\Lambda^{2}(x)}{x} T^{2}+\frac{x^{i T} T \log ^{2} T}{4 \pi^{2} i \log x}+O\left(\frac{T \log ^{2} T}{(\log \log T)^{2}}\right),
$$

where γ and γ^{\prime} run over the imaginary parts of the zeros of $\zeta(s)$.

References

[1] J. B. Conrey: At least two fifths of the zeros of the Riemann zeta function are on the critical line. Bull. A. M. S., vol. 20, no. 1, pp. 79-81 (1989).
[2] A. Fujii: Zeros, primes and rationals. Colloq. Math. Soc. Janos Bolyai, 34, 519597 (1981).
[3] --: On a theorem of Landau. Proc. Japan Acad., 65A, 51-54 (1989).
[4] -: On the uniformity of the distribution of the zeros of the Riemann zeta function. II. Comment. Math. Univ. St. Pauli, 31, 99-113 (1982).
[5] -: An additive theory of the zeros of the Riemann zeta function. Proc. Japan Acad., 66A, 105-108 (1990).
[6] D. A. Goldston: On a result of Littlewood concerning prime numbers. II. Acta Arith., XLIII, 49-51 (1983).
[7] S. Gonek: A formula of Landau and mean values of $\zeta(s)$. Topics in Analytic Number Theory. Univ. of Texas Press, pp. 92-97 (1985).
[8] -: An explicit formula of Landau and its applications (preprint).
[9] E. Landau: Über die Nullstellen der ζ-Funktion. Math. Ann., 71, 548-568 (1911).
[10] A. Selberg: Contributions to the theory of the Riemann zeta function. Arch. Math. Naturvid., 48, 89-155 (1946).
[11] E. C. Titchmarsh: The Theory of the Riemann Zeta Function. Oxford (1951).
[12] -: On the remainder in the formula for $N(T)$, the number of zeros of $\zeta(s)$ in the strip $0<t<T$. Proc. London Math. Soc., 2, 27, 449-458 (1928).

