73. A Uniqueness Set for Linear Partial Differential Operators with Real Coefficients

By Ryoko Wada
Hiroshima University

(Communicated by Shokichi Iyanaga, m. J. a., Nov. 9, 1990)

1. Introduction. Let d be a positive integer and $d \geqslant 2 . \mathcal{O}\left(C^{d}\right)$ denotes the space of holomorphic functions on C^{d}. Suppose P is an arbitrary irreducible homogeneous polynomial with real coefficients. For any complex number λ we put $\mathcal{O}_{\lambda}\left(C^{d}\right)=\left\{F \in \mathcal{O}\left(C^{d}\right) ;(P(D)-\lambda) F=0\right\}$. Let $\mathfrak{J}=\left\{z \in C^{d}\right.$; $P(z)=0\}$. The space $\mathcal{O}(\Re)$ of holomorphic functions on the analytic set \Re is equal to $\left.\mathcal{O}\left(C^{d}\right)\right|_{\Omega}$ by the Oka-Cartan theorem.

Consider the restriction mapping $\alpha_{\lambda}:\left.F \rightarrow F\right|_{\Re}$ of $\mathcal{O}_{2}\left(C^{d}\right)$ to $\mathcal{O}(\mathscr{I})$. In our previous paper [5] we showed that α_{2} is a linear isomorphism of $\mathcal{O}_{2}\left(C^{d}\right)$ onto $\mathcal{O}(\Re)$ when $P(z)=z_{1}^{2}+\cdots+z_{d}^{2}(d \geqslant 3)$. In this sense we called the cone $\left\{z \in C^{a} ; z_{1}^{2}+\cdots+z_{d}^{2}=0\right\}$ a uniqueness set for the differential operator $\sum_{j=1}^{d}\left(\partial / \partial z_{j}\right)^{2}+\lambda^{2}$ (for the case $P(z)=z_{1}^{2}+\cdots+z_{d}^{2}$, see also [4] and see [3] for more general polynomials of degree 2).

In this paper we will show that α_{λ} is a linear isomorphism of $\mathcal{O}_{\lambda}\left(C^{d}\right)$ onto $\mathcal{O}(\mathscr{l})$ for any $\lambda \in C$ if P is an arbitrary irreducible homogeneous polynomial with real coefficients.
2. Statement of the result and its proof. Let P be an arbitrary homogeneous polynomial and we define the polynomial P^{*} by $P^{*}(z)=\overline{P(\bar{z})}$ $(z \in \boldsymbol{C}) . \quad P\left(\boldsymbol{C}^{d}\right)$ denotes the space of polynomials on \boldsymbol{C}^{d} and $H_{k}\left(\boldsymbol{C}^{d}\right)$ denotes the space of homogeneous polynomials of degree k on C^{d}. We define the inner product \langle,$\rangle on P\left(C^{d}\right)$ by the following formula:

$$
\left\langle z^{\alpha}, z^{\beta}\right\rangle= \begin{cases}0 & (\alpha \neq \beta) \\ \alpha! & (\alpha=\beta) .\end{cases}
$$

We put $\mathscr{H}_{k}=\left\{\boldsymbol{F} \in H_{k}\left(C^{d}\right) ; P^{*}(D) F=0\right\}$ and $J_{k}=\left\{P \phi \in H_{k}\left(C^{d}\right) ; \phi\right.$ is some homogeneous polynomial on $\left.C^{d}\right\}$. The following lemma is known.

Lemma 2.1 ([1] and [2] Theorem 3). (i) For any nonnegative integer k we have $H_{k}\left(C^{d}\right)=\mathcal{H}_{k} \oplus J_{k}$ and $\mathcal{A}_{k} \perp J_{k}$ with respect to the inner product \langle,$\rangle .$
(ii) For any $\lambda \in C$ and any $F \in \mathcal{O}\left(C^{d}\right)$ there exist $H, G \in \mathcal{O}\left(C^{d}\right)$ uniquely such that

$$
\begin{equation*}
F=H+P G \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(P^{*}(D)+\lambda\right) H=0 \tag{2.2}
\end{equation*}
$$

Suppose $F \in \mathcal{O}\left(C^{d}\right)$. Let $F(z)=\sum_{k=0}^{\infty} F_{k}(z)$ be the development of F in a series of homogeneous polynomials F_{k} of degree k. Then $\sum_{k=0}^{\infty} F_{k}$ converges
to F uniformly on each compact set on C^{d} and F_{k} is given by the following formula :

$$
\begin{equation*}
F_{k}(z)=\frac{1}{2 \pi i} \oint_{|t|=\rho} \frac{F(t z)}{t^{k+1}} d t \quad \text { for } z \in C^{d} \tag{2.3}
\end{equation*}
$$

where $\rho>0$ and the right hand side of (2.3) does not depend on ρ.
The purpose of this paper is to prove the following
Theorem 2.2. Suppose P is an arbitrary irreducible homogeneous polynomial with real coefficients and λ is a complex number. Then the restriction mapping $\left.F \rightarrow F\right|_{\Re}$ defines the following bijection:

$$
\begin{equation*}
\alpha_{\lambda}: \mathcal{O}_{\lambda}\left(C^{d}\right) \xrightarrow{\sim} \mathcal{O}(\Re) . \tag{2.4}
\end{equation*}
$$

In order to prove the theorem we need the following
Lemma 2.3. Let Q be an irreducible polynomial on \boldsymbol{C}^{d}. If $h \in P\left(C^{d}\right)$ and h vanishes on $\left\{z \in \boldsymbol{C}^{d} ; Q(z)=0\right\}$, then there exists $g \in P\left(\boldsymbol{C}^{d}\right)$ such that $h=Q g$.

Lemma 2.3 can be proved by Hilbert's Nullstellensatz. We omit here the proof of this lemma.

Proof of Theorem 2.2. Let $f \in \mathcal{O}(\overparen{l})$. Then there exists some $F \in$ $\mathcal{O}\left(\boldsymbol{C}^{d}\right)$ such that $F=f$ on \mathscr{N} because $\mathcal{O}(\mathscr{I})=\left.\mathcal{O}\left(\boldsymbol{C}^{d}\right)\right|_{\mathfrak{r}}$. We have $P=P^{*}$ since P has real coefficients and from Lemma 2.1 (ii) there exist $H \in \mathcal{O}_{\lambda}\left(C^{d}\right)$ and $G \in \mathcal{O}\left(C^{d}\right)$ uniquely such that $F=H+P G$. So $f(z)=F(z)=H(z)$ on \Re and this shows that $\alpha_{\lambda} H=f$. Therefore α_{λ} is surjective.

Next, assume that $P \in H_{r}\left(\boldsymbol{C}^{d}\right)$. Suppose $F \in \mathcal{O}_{2}\left(C^{d}\right)$ and $\alpha_{2} F=0$. If we put $F=\sum_{n=0}^{\infty} F_{n}\left(F_{n} \in H_{n}\left(C^{d}\right), n=0,1,2, \cdots\right)$ then there exist $H_{n} \in \mathcal{H}_{n}$ and $G_{n} \in H_{n}\left(C^{d}\right)$ such that

$$
F_{n}= \begin{cases}H_{n}+G P_{n-r} & (n \geqslant r) \tag{2.5}\\ H_{n} & (0 \leqslant n<r)\end{cases}
$$

by Lemma 2.1 (i). Since $\sum_{n=0}^{\infty} F_{n}$ converges to F uniformly and $P \in H_{r}\left(C^{d}\right)$ we have $P(D) F=\sum_{n=0}^{\infty} P(D) F_{n}$ and $P(D) F_{n} \in H_{n-r}\left(C^{d}\right)$. Furthermore we have $P(D) F_{n}=\lambda F_{n-r}$ because $F \in \mathcal{O}_{\lambda}\left(C^{d}\right)$ and $P(D) F=\lambda F=\lambda \sum_{n=0}^{\infty} F_{n}$. Therefore (2.5) gives

$$
P(D) P G_{n-r}= \begin{cases}\lambda H_{n-r}+\lambda P G_{n-2 r} & (n \geqslant 2 r) \tag{2.6}\\ \lambda H_{n-r} & (r \leqslant n<2 r) .\end{cases}
$$

By assumption we have $F=0$ on \Re. So for any nonnegative integer n we obtain $F_{n}=0$ on \mathcal{I} by (2.3) and this shows that $H_{n}=0$ on \mathcal{I}. Hence H_{n} vanishes because $H_{n} \in J_{n} \cap \mathcal{F}_{n}=\{0\}$ from Lemma 2.3 and Lemma 2.1 (i). Therefore we have

$$
\begin{equation*}
P(D) P G_{n-r}=0 \quad(r \leqslant n<2 r) . \tag{2.7}
\end{equation*}
$$

(2.7) implies $P G_{n-r} \in \mathscr{H}_{n}$ and we have
(2.8) $\quad P G_{n-r}=0 \quad(r \leqslant n<2 r)$.

From (2.8) and (2.6) we obtain $P(D) P G_{n-r}=0(2 r \leqslant n<3 r)$ and hence $P G_{k}=0$ for any nonnegative integer k by iterating this. Therefore $F=0$ and α_{2} is injective.
Q.E.D.

Remark. In Theorem 2.2 the condition that P is irreducible is neces-
sary. For example, consider $P(z)=\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{d}^{2}\right)^{2}$ and $f(z)=z_{1}^{2}+\cdots+$ z_{d}^{2}. Then α_{0} is not injective since $f \in \mathcal{O}_{0}\left(C^{d}\right)$ and $f=0$ on \mathfrak{N} though $f \not \equiv 0$ on C^{d}.

References

[1] E. Fischer: Über die Differentiationsprozesse der Algebra. J. für Math., 148, 1-78 (1917).
[2] H. S. Shapiro: An algebraic theorem of E. Fischer, and the holomorphic Goursat problem. Bull. London Math. Soc., 21, 513-537 (1989).
[3] R. Wada: A uniqueness set for linear partial differential operators of the second order. Funkcial. Ekvac., 31, 241-248 (1988).
[4] --: Holomorphic functions on the complex sphere. Tokyo J. Math., 11, 205-218 (1988).
[5] R. Wada and M. Morimoto: A uniqueness set for the differential operator $\Delta_{z}+\lambda^{2}$. ibid., 10, 93-105 (1987).

