73. A Uniqueness Set for Linear Partial Differential Operators with Real Coefficients

By Ryoko WADA Hiroshima University

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 9, 1990)

1. Introduction. Let d be a positive integer and $d \ge 2$. $\mathcal{O}(\mathbf{C}^d)$ denotes the space of holomorphic functions on \mathbf{C}^a . Suppose P is an arbitrary irreducible homogeneous polynomial with real coefficients. For any complex number λ we put $\mathcal{O}_{\lambda}(\mathbf{C}^a) = \{F \in \mathcal{O}(\mathbf{C}^d); (P(D) - \lambda)F = 0\}$. Let $\mathcal{N} = \{z \in \mathbf{C}^d; P(z) = 0\}$. The space $\mathcal{O}(\mathcal{N})$ of holomorphic functions on the analytic set \mathcal{N} is equal to $\mathcal{O}(\mathbf{C}^d)|_{\mathcal{R}}$ by the Oka-Cartan theorem.

Consider the restriction mapping $\alpha_{\lambda}: F \to F|_{\mathfrak{N}}$ of $\mathcal{O}_{\lambda}(\mathbb{C}^d)$ to $\mathcal{O}(\mathfrak{N})$. In our previous paper [5] we showed that α_{λ} is a linear isomorphism of $\mathcal{O}_{\lambda}(\mathbb{C}^d)$ onto $\mathcal{O}(\mathfrak{N})$ when $P(z) = z_1^2 + \cdots + z_d^2$ ($d \ge 3$). In this sense we called the cone $\{z \in \mathbb{C}^d ; z_1^2 + \cdots + z_d^2 = 0\}$ a uniqueness set for the differential operator $\sum_{j=1}^d (\partial_j \partial z_j)^2 + \lambda^2$ (for the case $P(z) = z_1^2 + \cdots + z_d^2$, see also [4] and see [3] for more general polynomials of degree 2).

In this paper we will show that α_{λ} is a linear isomorphism of $\mathcal{O}_{\lambda}(\mathbb{C}^{d})$ onto $\mathcal{O}(\mathcal{N})$ for any $\lambda \in \mathbb{C}$ if P is an arbitrary irreducible homogeneous polynomial with real coefficients.

2. Statement of the result and its proof. Let P be an arbitrary homogeneous polynomial and we define the polynomial P^* by $P^*(z) = \overline{P(\overline{z})}$ $(z \in C)$. $P(C^d)$ denotes the space of polynomials on C^d and $H_k(C^d)$ denotes the space of homogeneous polynomials of degree k on C^d . We define the inner product \langle , \rangle on $P(C^d)$ by the following formula:

$$\langle z^{lpha}, z^{eta}
angle = egin{cases} 0 & (lpha
eq eta) \ lpha & ! & (lpha = eta). \end{cases}$$

We put $\mathcal{H}_k = \{F \in H_k(\mathbb{C}^d); P^*(D)F = 0\}$ and $J_k = \{P\phi \in H_k(\mathbb{C}^d); \phi \text{ is some homogeneous polynomial on } \mathbb{C}^d\}$. The following lemma is known.

Lemma 2.1 ([1] and [2] Theorem 3). (i) For any nonnegative integer k we have $H_k(C^d) = \mathcal{H}_k \oplus J_k$ and $\mathcal{H}_k \perp J_k$ with respect to the inner product \langle , \rangle .

(ii) For any $\lambda \in C$ and any $F \in \mathcal{O}(C^d)$ there exist $H, G \in \mathcal{O}(C^d)$ uniquely such that

(2.1) F = H + PG

and

(2.2)
$$(P^*(D) + \lambda)H = 0.$$

Suppose $F \in \mathcal{O}(C^d)$. Let $F(z) = \sum_{k=0}^{\infty} F_k(z)$ be the development of F in a series of homogeneous polynomials F_k of degree k. Then $\sum_{k=0}^{\infty} F_k$ converges

No. 9]

to F uniformly on each compact set on C^{a} and F_{k} is given by the following formula:

(2.3)
$$F_k(z) = \frac{1}{2\pi i} \oint_{|t|=\rho} \frac{F(tz)}{t^{k+1}} dt \quad \text{for } z \in C^d,$$

where $\rho > 0$ and the right hand side of (2.3) does not depend on ρ .

The purpose of this paper is to prove the following

Theorem 2.2. Suppose P is an arbitrary irreducible homogeneous polynomial with real coefficients and λ is a complex number. Then the restriction mapping $F \rightarrow F|_{\pi}$ defines the following bijection: (2.4) $\alpha_{\lambda} : \mathcal{O}_{1}(\mathbf{C}^{d}) \xrightarrow{\sim} \mathcal{O}(\mathcal{N}).$

In order to prove the theorem we need the following

Lemma 2.3. Let Q be an irreducible polynomial on C^{d} . If $h \in P(C^{d})$ and h vanishes on $\{z \in C^{d}; Q(z)=0\}$, then there exists $g \in P(C^{d})$ such that h=Qg.

Lemma 2.3 can be proved by Hilbert's Nullstellensatz. We omit here the proof of this lemma.

Proof of Theorem 2.2. Let $f \in \mathcal{O}(\mathcal{N})$. Then there exists some $F \in \mathcal{O}(\mathbb{C}^d)$ such that F = f on \mathcal{N} because $\mathcal{O}(\mathcal{N}) = \mathcal{O}(\mathbb{C}^d)|_{\mathcal{N}}$. We have $P = P^*$ since P has real coefficients and from Lemma 2.1 (ii) there exist $H \in \mathcal{O}_{\lambda}(\mathbb{C}^d)$ and $G \in \mathcal{O}(\mathbb{C}^d)$ uniquely such that F = H + PG. So f(z) = F(z) = H(z) on \mathcal{N} and this shows that $\alpha_{\lambda}H = f$. Therefore α_{λ} is surjective.

Next, assume that $P \in H_r(\mathbb{C}^d)$. Suppose $F \in \mathcal{O}_{\mathfrak{l}}(\mathbb{C}^d)$ and $\alpha_{\mathfrak{l}}F=0$. If we put $F=\sum_{n=0}^{\infty}F_n$ $(F_n \in H_n(\mathbb{C}^d), n=0, 1, 2, \cdots)$ then there exist $H_n \in \mathcal{H}_n$ and $G_n \in H_n(\mathbb{C}^d)$ such that

(2.5)
$$F_n = \begin{cases} H_n + GP_{n-r} & (n \ge r) \\ H_n & (0 \le n < r) \end{cases}$$

by Lemma 2.1 (i). Since $\sum_{n=0}^{\infty} F_n$ converges to F uniformly and $P \in H_r(\mathbb{C}^d)$ we have $P(D)F = \sum_{n=0}^{\infty} P(D)F_n$ and $P(D)F_n \in H_{n-r}(\mathbb{C}^d)$. Furthermore we have $P(D)F_n = \lambda F_{n-r}$ because $F \in \mathcal{O}_{\lambda}(\mathbb{C}^d)$ and $P(D)F = \lambda F = \lambda \sum_{n=0}^{\infty} F_n$. Therefore (2.5) gives

(2.6)
$$P(D)PG_{n-r} = \begin{cases} \lambda H_{n-r} + \lambda PG_{n-2r} & (n \ge 2r) \\ \lambda H_{n-r} & (r \le n < 2r) \end{cases}$$

By assumption we have F=0 on \mathcal{N} . So for any nonnegative integer n we obtain $F_n=0$ on \mathcal{N} by (2.3) and this shows that $H_n=0$ on \mathcal{N} . Hence H_n vanishes because $H_n \in J_n \cap \mathcal{H}_n = \{0\}$ from Lemma 2.3 and Lemma 2.1 (i). Therefore we have

(2.7) $P(D)PG_{n-r}=0$ $(r \leq n < 2r).$ (2.7) implies $PG_{n-r} \in \mathcal{H}_n$ and we have

(2.8) $PG_{n-r}=0$ $(r \leq n < 2r).$

From (2.8) and (2.6) we obtain $P(D)PG_{n-r}=0$ ($2r \le n < 3r$) and hence $PG_k=0$ for any nonnegative integer k by iterating this. Therefore F=0 and α_{λ} is injective. Q.E.D.

Remark. In Theorem 2.2 the condition that P is irreducible is neces-

sary. For example, consider $P(z) = (z_1^2 + z_2^2 + \cdots + z_d^2)^2$ and $f(z) = z_1^2 + \cdots + z_d^2$. Then α_0 is not injective since $f \in \mathcal{O}_0(\mathbb{C}^d)$ and f = 0 on \mathcal{N} though $f \not\equiv 0$ on \mathbb{C}^d .

References

- E. Fischer: Über die Differentiationsprozesse der Algebra. J. für Math., 148, 1-78 (1917).
- [2] H. S. Shapiro: An algebraic theorem of E. Fischer, and the holomorphic Goursat problem. Bull. London Math. Soc., 21, 513-537 (1989).
- [3] R. Wada: A uniqueness set for linear partial differential operators of the second order. Funkcial. Ekvac., 31, 241-248 (1988).
- [4] ——: Holomorphic functions on the complex sphere. Tokyo J. Math., 11, 205-218 (1988).
- [5] R. Wada and M. Morimoto: A uniqueness set for the differential operator $\Delta_z + \lambda^2$. ibid., 10, 93-105 (1987).