69. The Plancherel Formula for the Symmetric Space G_{C} / G_{R}

By Shigeru Sano
Department of Mathematics, University of Industrial Technology
(Communicated by Kunihiko Kodaira, M. J. A., Nov. 9, 1990)

Let G_{C} be a complex linear connected reductive group, and τ an involutive automorphism of G_{c}. Denote by G_{C}^{τ} the set of all fixed points of τ in G_{C}, and by $\left(G_{c}^{t}\right)_{0}$ its identity components. Take a subgroup G_{R} such that $\left(G_{C}^{\tau}\right)_{0} \subset G_{R} \subset G_{C}^{\tau}$, then $\left[G_{R}:\left(G_{R}\right)_{0}\right]<\infty$. Let θ be an involution of G_{C} satisfying that $\theta \tau=\tau \theta$ and $\theta(G)=G$ for $G=G_{R}$.

Let \mathfrak{g}_{c} be the complex reductive Lie algebra corresponding to G_{c}. The automorphisms of g_{c} induced by τ and θ of G_{c} are denoted by the same letters τ and θ respectively. The decomposition according to the involution τ (resp. θ) are denoted as $\mathfrak{g}_{C}=\mathfrak{g}+\mathfrak{q}$ (resp. $\left.\mathfrak{g}_{C}=\mathfrak{f}+\mathfrak{p}\right)$. Let G_{H} be a complexification of G_{C} and let g_{H} be its Lie algebra. The dual of g_{C} in g_{H} is defined by $\mathfrak{g}_{c}^{d}=\mathfrak{f} \cap \mathfrak{g}+i(\mathfrak{f} \cap \mathfrak{g})+i(\mathfrak{p} \cap \mathfrak{q})+\mathfrak{p} \cap \mathfrak{q}$ and the dual of \mathfrak{f} is given by $\mathfrak{i}^{d}=\mathfrak{f} \cap \mathfrak{g}$ $+i(\mathfrak{p} \cap \mathfrak{q})(i=\sqrt{-1})$. Let K be the analytic subgroup of G_{C} corresponding to \mathfrak{f}, and K^{d} and G_{C}^{d} be those of G_{H} according to \mathfrak{f}^{d} and \mathfrak{g}_{C}^{d} respectively. In this paper, we study harmonic analysis on the symmetric space $X=G_{C} / G_{R}$. The symmetric space G_{C} / G_{R} is substantially, "the dual" space of the space $G_{R} \cong\left(G_{R} \times G_{R}\right) / G_{R}$, and we call it the c-dual of the latter. Actually, there exist several dualities between continuous series of X and discrete series of G_{R}. In $\S 1$, we study continuous series and corresponding invariant spherical distributions on \boldsymbol{X}. In $\S 2$, we discuss general principal series containing the discrete series. In §3, we study Eisenstein integral and its constant term, and in § 4 Plancherel formula.
§ 1. Continuous series. Here in § 1, we suppose that the symmetric pair $\left(g_{c}, g\right)$ has a sprit Cartan subspace \mathfrak{a}. Let $P=M A N\left(M A=Z_{G_{o}}(\mathfrak{a}), A=\right.$ $\exp \mathfrak{a}$) be the minimal parabolic subgroup associated to \mathfrak{a}. Then $G P$ is an open orbit of $G \backslash G_{c}$. Denote the set of positive roots of \mathfrak{a} associated to P by $\Sigma^{+}(\mathfrak{a})$, and put $\rho=(1 / 2) \sum_{\alpha \in \Sigma^{+(a)}} \alpha$. Let \mathfrak{a}^{*} be the dual of \mathfrak{a} and \mathscr{F} be a Weyl chamber in $i \mathfrak{a}^{*}$. If $\alpha \in \Sigma^{+}(\mathfrak{a})$, let $H_{\alpha} \in \mathfrak{a}$ be determined by using Killing form: $\left\langle H_{\alpha}, H\right\rangle=\alpha(H), H \in \mathfrak{a}$. We define Poisson kernels $P_{\nu}(g)$ for $\nu \in \mathscr{P}$ as follows : $P_{\nu}(g)=\exp \nu\{H(g)\}\left(g^{-1} \in G M \cdot \exp H(g) \cdot N\right)$ and $P_{\nu}(g)=0\left(g^{-1} \notin G P\right)$. Giving a Haar measure $d g$ on G and a G_{c}-invariant measure $d x(x=g G)$ on \boldsymbol{X}. We define an invariant spherical distribution on \boldsymbol{X} by

$$
\Phi_{\lambda}(f)=\int_{X} \phi_{\lambda}(x) f(x) d x \quad\left(f(x) \in C_{C}^{\infty}(\boldsymbol{X})\right)
$$

where $\phi_{\lambda}(x)=\int_{G} P_{\rho-\lambda}(h x) d h$. Let W be the Weyl group of the pair $\left(g_{G}, \mathfrak{a}_{G}\right)$ and let W_{G} be the group defined by $W_{G}=N_{G}(A) / Z_{G}(A)$. We put $W^{*}=W / W_{G}$ and define invariant spherical distributions $\Theta_{\lambda}=\sum_{w \in W^{*}} \Phi_{w \lambda}$ by taking sum
over W^{*}. Let X^{\prime} (resp. \mathscr{P}^{\prime}) be the set of all regular elements of X (resp. \mathscr{F}). If we normalize the Haar measure on G, then we have:

Proposition 1.1. The distributions Θ_{2} agree with analytic functions on $A^{\prime}=A \cap X^{\prime}$. Moreover for $\lambda \in \mathscr{P}^{\prime}$, we have

$$
\left.\Theta_{\lambda}\right|_{A^{\prime}}=\frac{\sum_{w \in W} \varepsilon(w) e^{w \lambda(X)}}{\pi(\lambda) \Delta(\exp X)} \quad(X \in \mathfrak{a})
$$

where $\pi(\mu)=\prod_{\alpha>0} \mu\left(H_{a}\right)$.
For a function $f(x)$ on \boldsymbol{X}, we choose an $f_{0} \in C_{C}^{\infty}\left(G_{G}\right)$ such that the integral of f_{0} over $g G$ agree with the value $f(x)$ for $x=g G$. For a function $h(g)$ on G_{C}, we put $h^{*}(g)=\operatorname{conj} h\left(g^{-1}\right)$.

Proposition 1.2. For $f(x) \in C_{C}^{\infty}(X)$ satisfying supp $f \subset G[A]$, we have

$$
\int_{\Phi^{\prime}} \Theta_{\lambda}\left(f_{0}^{*} * f_{0}\right)|\pi(\lambda)|^{2} d \lambda=\int_{X}|f(x)|^{2} d x
$$

Under the assumption of this section, there exist several different types of discrete series on G_{R}. From the above equality, we may say that the number of the types of discrete series for G_{R} accords with the multiplicity of the continuous series for G_{C} / G_{R}.
§2. Principal series of $\boldsymbol{G}_{\boldsymbol{C}} / \boldsymbol{G}_{\boldsymbol{R}}$. Let $\Pi=\left\{\mathfrak{i}_{1}, \mathfrak{j}_{2}, \cdots, \dot{\mathrm{i}}_{m}\right\}$ be a maximal set of Cartan subspaces of \mathfrak{q} not conjugate each other under $K \cap G$. For each $\mathfrak{j}_{l}(l=1,2, \cdots, m)$, we put $\mathfrak{b}_{l}=\mathfrak{j}_{l} \cap \mathfrak{f}$ and $\mathfrak{a}_{l}=\mathfrak{j}_{l} \cap \mathfrak{p}$. Let $\mathfrak{r}_{l}=Z_{8_{g}}\left(\mathfrak{b}_{l}\right)$ and take \mathfrak{m}_{l} such that $\mathfrak{r}_{l}=\mathfrak{m}_{l} \oplus \dot{j}_{l}$. Let $\Sigma^{+}\left(\mathfrak{b}_{l}\right)$ be the set of all positive roots of $\left(\mathfrak{b}_{l}, \mathfrak{g}_{c}\right)$, and let $\mathfrak{n}_{l}=\sum_{\alpha>0} \mathfrak{g}\left(\mathfrak{h}_{l}, \alpha\right)$. The analytic subgroups of G_{C} according to $\mathfrak{l}_{l}, \mathfrak{m}_{l}, \mathfrak{j}_{l}, \mathfrak{b}_{l}$ and \mathfrak{n}_{l} are denoted by $L_{l}, M_{l}, J_{l}, B_{l}$ and N_{l} respectively. Then L_{l} is a linear complex connected reductive group and $P_{l}=M_{l} B_{l} N_{l}$ is a parabolic subgroup of G_{C}. If $G P_{l}$ is a closed (resp. open) orbit in $G \backslash G_{C}$, it corresponds to the discrete (resp. continuous) series. The symmetric space $M_{l} / M_{l} \cap G$ has continuous series. Let W^{*} be the Weyl group of the pair $\left(\mathfrak{a}_{l}, \mathfrak{m}_{l}\right)$. We choose a Weyl chamber \mathscr{F}_{l} in $i \mathfrak{a}_{l}^{*}$. For $\lambda \in \mathscr{P}_{l}^{\prime}$, let Θ_{λ}^{l} be the invariant spherical distributions on $M_{l} / M_{l} \cap G$ given in $\S 1$. Parametrize the discrete series ω by $\left(B_{l} \cap G \backslash B_{l}\right)^{\wedge}$ and define a Poisson kernel P_{ω} by $P_{\omega}(g)=\exp [(\rho-\omega) U(g)]$ for $g^{-1} \in G m(g) \cdot \exp U(g) \cdot N_{l}\left(m(g) \in M_{l} \cap G \backslash M_{l}\right.$, $\left.\exp U(g) \in B_{l} \cap G \backslash B_{l}\right), P_{\omega}(g)=0$ for $g^{-1} \notin G P_{l}$. And we define invariant spherical distributions $\Theta_{\lambda, \omega}^{l}$ on \boldsymbol{X} by

$$
\Theta_{\lambda, \omega}^{l}(f)=\int_{\boldsymbol{X}} \theta_{\lambda, \omega}^{l}(x) f(x) d x \quad\left(f(x) \in C_{C}^{\infty}(\boldsymbol{X})\right)
$$

where $\theta_{\lambda, \omega}^{l}(x)=\int_{G} \Theta_{\lambda}^{l}(m(h x)) P_{\rho-\omega}(h x) d h$. We put $W_{G}^{l}=N_{G}\left(\mathfrak{j}_{l}\right) / Z_{G}\left(\mathfrak{j}_{l}\right)$ and W_{l} the Weyl group of the pair $\left(\mathfrak{j}_{l}, g_{c}\right)$. Let W_{l}^{*} be the subgroup of W_{l} generated by W^{*} and W_{G}^{l}. Denote by Π_{l} the set of all Cartan subspaces in Π obtained from \dot{j}_{l} through Cayley transformations corresponding to imaginary roots of $\Sigma\left(\mathrm{j}_{l}\right)$ and conjugations of $K \cap G$.

Proposition 2.1. For $\lambda \in \mathscr{P}^{\prime}$ and $\omega \in\left(B_{l} \cap G \backslash B_{l}\right)^{\wedge}$, the distributions $\Theta_{\lambda, \omega}^{l}$ agree on $B_{\imath} \cap G \backslash B_{\imath}^{\prime}$ with analytic functions which are given by

$$
\left.\Theta_{\lambda, \omega}^{l}\right|_{J \imath \cap G \backslash J_{l^{\prime}}}=\left\{\begin{array}{cl}
\frac{\sum_{w \in W_{l^{*}}} \varepsilon(w) e^{w(\lambda, \omega)(X)}}{\pi(\lambda, \omega) \Delta(\exp X)} & X \in \mathfrak{i}_{l} \\
0 & X \in \mathfrak{i}\left(\mathfrak{j} \in \Pi \backslash \Pi_{l}\right)
\end{array}\right.
$$

§3. Eisenstein integral. We define for the parabolic subgroup $P_{l}=$ $M_{l} B_{l} N_{l}$, an integral as follows. For $\varphi \in C^{\infty}\left(M_{l} / M_{l} \cap G\right)$, extend it to a function on G_{C} by $\varphi($ hwnbm $)=\varphi(m)$. For $g \in G_{C}$, let $B(g)$ denote the element of $\left(B_{l} \cap G\right) \backslash B_{l}$ given as $g \in G w(g) N_{l} B(g) M_{l}\left(B(g) \in\left(B_{l} \cap G\right) \backslash B_{l}, G_{C}=\right.$ $\left.\cup_{w \in W} G w P_{l}\right)$. Then we define

$$
E\left(P_{l}: \varphi: x\right)=\int_{G} \alpha(h) \varphi(x h) \exp (\rho-w) B(x h) d h, \text { for } \alpha \in C_{C}^{\infty}(G) .
$$

We next consider the constant term on symmetric spaces. For $P=$ $M_{l} B_{l} N_{l}$, let $P^{d}=M_{l}^{d} A_{l}^{d} N_{l}^{d}$ be the dual of P in G_{c}^{d}, then $M_{l}^{d} \cong M, N_{l}^{d} \cong N_{l}$. For the spaces

$$
\begin{aligned}
& C^{\infty}(\boldsymbol{P} / G)=\left\{f \in C^{\infty}(\boldsymbol{X}): \text { supp } f \subset P_{l} / G\right\}, \\
& C^{\infty}\left(\boldsymbol{P}^{d} / K^{d}\right)=C^{\infty}\left(G_{C}^{d} / K^{d}\right),
\end{aligned}
$$

consider the isomorphism

$$
\eta: C^{\infty}(P / G) \stackrel{\text { local }}{\cong} C^{\infty}\left(P^{d} / K^{d}\right): f \rightarrow f^{\eta}
$$

And denote by η_{l} the analogous isomorphism in the case of M_{l}. For $f \in \mathcal{A}(\boldsymbol{X})$, we define its constant term $f_{P}=\eta_{l}^{-1}\left(f_{P d}^{\eta}\right)$ on $M_{l} / M_{l} \cap G$ by

$$
\lim _{\substack{a \rightarrow \infty \\ P^{d}}}\left\{d_{P d}(a m) f^{\eta}(a m)-f_{P d}^{n}(a m)\right\}=0 .
$$

Proposition 3.1. Let P and P^{\prime} be parabolic subgroups whose compact part is \mathfrak{b}. Then there exist constants $c(s, \omega)(s \in W(\mathfrak{b}))$ satisfying

$$
\underset{P^{\prime}}{E}(P: \varphi: b m)=\sum_{s \in W^{\prime}(6)}(c(s, \omega) \varphi)(m) e^{s \omega(\log b)} .
$$

§4. Plancherel formula. Here we discuss Plancherel formula by using the invariant spherical distributions $\Theta_{2, \omega}^{l}$ defined in § 2. The Eisenstein integral corresponding to $\Theta_{\lambda, \omega}^{l}$ is given as follows:

Proposition 4.1. For $\lambda \in \mathscr{F}_{l}$ and $\omega \in\left(B_{l} / B_{l} \cap G\right)^{\wedge}$, weं have

$$
\left\langle\Theta_{\lambda, \omega}^{l}, l(x) f\right\rangle=E\left(P_{l}: \varphi_{f}: x\right)
$$

where, with $x h=h_{0} w n_{0} b_{0} m_{0}$,
$\varphi_{f}=\int_{M_{l / M_{l} \cap G}} \int_{N_{l} \times\left(B_{l} / B_{\imath} \cap G\right)} \Theta_{\lambda}(m) \exp \{(\omega-\rho)(\log b)\} f\left(n b m_{0} m\right) d n d b^{*} d m^{*}$.
If we normalize the measures, we have the Plancherel formula as follows:

Theorem 4.2. For $f \in C_{C}^{\infty}(X)$, we have

$$
\int_{X}|f(x)|^{2} d x=\sum_{l=1}^{m} \sum_{\omega \in\left(B_{l} / B_{l} \cap G\right) \wedge} \int_{g_{l^{\prime}}}\left\langle\Theta_{\lambda, \omega}^{l}, f_{0}^{*} * f_{0}\right\rangle|\pi(\lambda, \omega)|^{2} d \lambda .
$$

Outline of proof. For each $\Theta_{\lambda, \omega}^{l}$, we reduce it to the function on $M_{l} / M_{l} \cap G$ by Proposition 4.1 and by taking its constant term. For the symmetric space $M_{l} / M_{l} \cap G$, Proposition 1.2 holds. We decompose the space $C_{C}^{\infty}(X)$ according to each parabolic subgroup. We give Fourier inversion formulas associated to each part of the decompositions. Then we get the Plancherel formula after combining these formulas.

References

[1] Harish-Chandra: Harmonic analysis on real reductive groups. I, II and III. J. Func. Anal., 19, 104-204 (1975) ; Invent. Math., 36, 1-55 (1976) ; Ann. of Math., 104, 117-201 (1976).
[2] S. Sano: Distribution sphériques invariantes sur l'espace semi-simple et son cdual. Lect. Notes in Math., no. 1243, Springer-Verlag, pp. 283-309 (1985).
[3] --: Distributions sphériques invariantes de la série discrète sur l'espace symétrique semi-simple réel G_{C} / G_{R}. Sci. Papers College of Arts and Sciences, Univ. of Tokyo, 39, 57-71 (1989).

