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On a Determination of Real Quadratic Fields of Class
Number One and Related Continued Fraction

Period Length Less than 25

By R. A. MOLLIN*) and H. C. WILLIAMS**)

(Communicated by Shokichi IYAN.GA, M. J..., Jan. 14, !991)

1. Introduction. The primary thrust of this paper is to investi-
gate real quadratic fields Q(/-) of class number h(d) equal to 1 when
related to the period length, k of the continued fraction expansion of

{12 i d----2’ 3 (md 4)} We actually de-where o=(-1+,/d)/a with = if dl (rood 4)
termine, (with only one possible value remaining, whose very existence
would be a couaterexample to the Riemann hypothesis), all those positive
square-free integers d with h(d)=l and k_24. Moreover our new ap-
p.roach allows us to reformulate the Gauss conjecture as to the infinitude
of real quadratic fields K=Q(/d ) with d positive square-free and h(d)----1,
in terms of the theory of continued fractions.

2. Notations and preliminaries. We let (C) denote the maximal
order in K=Q(/d ).

Throughout d will be assumed to be a positive square-free integer. For
convenience sake we collect together basic facts involving continued frac-
tions which we will be using throughout the paper.

For (o as above let the continued raction expansion o (o be denoted by
w= (a, a, ., a}. Then a0=a= [(o], a [(P+/-) QI for i1 (here
denotes the greatest integer function), where (P0, Qo)--(1, 2) if dl (mod 4)
and (P0, Q0)=(0,1) otherwise.
(2.1) P,/l=a,Q,-P,
(2.2) Q,
(2.3) a=a_
Moreover either,
(2.4) P--P
(2.5) Q--Q

Also,
or i_0,
fori0, and
for 1 i_k-1.

in which case k--2i or
in which case k=2i+ 1.

Now we give some background to the research involved herein. In [2]
Kim and Leu showed that 2 conjectures (oe of Chowla [1], and oae of Yokoi
[15]) are valid with one possible exceptional value remaining, and therefore
that one of the 2 conjectures is valid with the remaining oe failing for at
most one value. In [7] we proved Chowla’s conjecture under the assumption
of the generalized Riemann hypothesis (GRH). Subsequently we extended
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our techniques in [8]-[9] to determine all h(d)=l, under the GRH, when
d-m +r where 4m----- 0 (mod r) i.e., when d is of form we call extended
Richaud-Degert (ERD)-type. In [11] we were able to remove the GRH
assumption and determined all ERD-types d where h(d)= 1, with one possi-
ble value remaining. Moreover, the above provided applicatio.ns to conjec-
tures in the literature; viz., the aforementioned ones of Chowla and Yokoi
as well as one of Mollin in [3], and three of Mollin-Williams in [9]. The
results of [8]-[9] and [11] therefore show that five of the six aforementioned
conjectures are valid with the remaining one failing for at most one value,
the existence .of which would be a counterexample to the Riemann hypothe-
sis, (see [5] for details as well as a general survey). Therefore we have
generalized the work of Kim-Leu in [2] since they were only interested in
very special ERD-types; viz, d=m+l or d=m+4. Furthermore from the
results of Mollin in [3]-[4] we know that if h(d)=l and d is of ERD-type
then d is one of the forms in the aforementioned six conjectures, and that
k_4. Thus we began investigation of the class number one problem from
the perspective of continued fraction theory in [10]. The work herein con-
tinues that approach.

We now turn Our attention to extending our algebraic and computa-
tional techniques on this continued fraction approach in the next section.

:. Continued fractions and class number one. We now provide a
description of those h(d)=l for k as large as possible. For reasons which
will become clear later, we look at k_24. The f.ollowing table lists all
square-free d with h(d)=l for k_24 and z50,.000 where

{ dif d=__l(mod4) }z/--
4d if d_2,3(mod4)

Table 3.1

k d

10

2, 5, 13, 29, 53, 173, 293
3, 6, 11, 21, 38, 77, 83, 93, 227, 237, 437, 453, 1133, 1253
17, 37, 61,101,197, 317, 461,557, 677, 773, 1877
7, 14, 23, 33, 47, 62, 69, 133, 141,167, 213, 398, 413, 573, 717, 1077,
1293, 1397, 1757, 3053
41,149, 157, 181,269, 397, 941, 1013, 2477, 2693, 3533, 4253
19, 22, 57, 59, 107, 131,253, 278, 309, 341,381,749, 813, 893, 1893,
2453, 2757, 3317
89, 109, 113, 137, 373, 389, 509, 653, 797, 853, 997, 1493, 1997, 2309,
2621, 3797, 4973
31, 71,158, 206, 383, 501,503, 581,743, 789, 869, 917, 983, 989, 1333,
1349, 1437, 2573, 3093, 6677, 14693
73, 97, 233, 277, 349, 353, 613, 821,877, 1181, 1277, 1613, 1637, 1693,
2357, 3557, 3989, 4157, 4517, 7213, 11213
43, 67, 86, 118, 129, 161,301,517, 563, 597, 669, 827, 1238, 1357, 1389,
2253, 2901, 3101, 3437, 4413, 4613, 7061, 7653
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11

12

13

14

15

16

17

18

19

2O

21

22

23

24

541,593, 661,701,857, 1061, 1109, 1217, 1237, 1709, 1733, 1949, 2333,
2957, 3677, 3701, 4373, 5237, 5309, 7013, 8693, 9533, 10853, 12437
46, 1.03, 127, 177, 209, 239, 263, 479, 734, 887, 933, 973, 1149, 1541,
1589, 1661, 1797, 1837, 2229, 2933, 3269, 3309, 3453, 4829, 6261, 6333,
6797, 7637, 10757, 12381
421,757, 1021, 1097, 1117, 1301, 1553, 1973, 2069, 2237, 2273, 2789,
2861, 3373, 3461, 3517, 3917, 4133, 4397, 5573, 5717, 6221, 6317, 7253,
7517, 8741, 9173, 9437, 10181, 11597, 15797
134, 179, 201,251,262, 307, 347, 422, 467, 497, 502, 587, 683, 713, 838,
1317, 1382, 1477, 2077, 2189, 2317, 3197, 3837, 4037, 4197, 4661, 4997,
5093, 5277, 5357, 5493, 5997, 7493, 7613, 7997, 9237, 17237
193, 281, 1861, 1933, 2141, 2437, 2741, 2837, 3037, 3413, 4637, 4877,
6653, 8117, 11549, 13037, 15077, 23117
94,191,217,249,302,311,329,393,431,446,537,542,589, 647, 878, 1319,
1487, 1909, 2157, 2351, 2413, 2517, 2733, 3149, 4109, 6013, 6117, 6533,
7629, 7773, 8717, 9037, 9917, 11693, 13853, 14253, 15221, 16397, 16557
521,617, 709, 1433, 1597, 2549, 2909, 3581, 3821, 4.013, 5501, 5693,
5813, 6197, 7853, 8093, 8573, 9677, 10597, 10973, 13109, 13613, 15413,
17093, 20261, 22637, 26717
139,163, 283, 417, 419, 566, 633, 737, 758, 781,787, 998, 1141, 1142,
1163, 1286, 1307, 1337, 1461, 1718, 1829, 1931, 2243, 2537, 2653, 2966,
2973, 3013, 3117, 3629, 3713, 4061, 4269, 4541, 4781, 6629, 6717, 7037,
7133, 7181, 8013, 8157, 8197, 8301, 8777, 9957, 10277, 10493, 11429,
11957, 12293, 13373, 13917, 16373, 18653, 18813, 18893, 20597, 23597,
24173, 26837, 30917
241,313, 449, 829, 953, 1069, 1193, 1213, 1697, 2381, 3853, 4733, 5077,
5189, 5381, 5669, 5981, 6173, 6277, 6389, 6397, 6917, 7717, 7757, 7877,
8237, 9973, 10037, 11093, 11933, 12893, 13397, 19997, 27917
151,199, 367, 622, 863, 1151, 1454, 1501, 1502, 1941, 2033, 3902, 4101,
4317,4677,4821,5549, 6077, 7277, 8133, 8453, 8813, 9253, 9357, 11381,
11733, 14237, 15837, 17933, 18293, 21653, 23453, 25157, 36077, 49013
337, 569, 977, 1453, 1669, 1741, 2053, 2293, 4093, 4349, 5437, 5557,
8861, 9341, 10133, 10709, 11117, 12917, 14549, 15053, 16253, 18413,
18917, 19013, 19973, 20117, 20333, 25373, 38493, 29333
166, 489, 491,523, 643, 662, 947, 971, 1137, 1187, 1427, 1571, 1667,
1713, 1821, 2181, 2217, 2469, 3493, 3693, 3749, 3909, 3947, 4213, 4787,
4989, 5789, 5893, 5909, 6933, 6941, 7509, 7941, 10157, 10533, 10821,
11189, 11469, 12477, 12533, 13733, 14333, 14853, 15069, 15637, 15893,
17813, 19613, 20429, 21117, 23093, 30533, 35237, 36893
433,457,641,881, 1381, 191"3, 2393, 2749, 3389, 3733, 4421, 5653, 6701,
7349, 7949, 8669, 10253, 11813, 12413, 13709, 13757, 14717, 14813,
14957, 15749, 16229, 16453, 19037, 19421, 22613, 22853, 24317, 27653,
28517, 30197, 31253, 33893, 37397
271,382, 607, 753, 911, 1103, 1262, 1438, 1473, 1838, 1982, 2063, 2078,
2558, 2661, 2687, 2893, 2903, 3986, 3113, 3167, 3377, 3669, 4237, 4333,
4533, 5293, 5533, 5753, 6509, 6621, 7197, 7269, 8153, 8189, 8213, 8413,
10637, 11157, 11573, 11589, 11893, 12677, 12797, 13453, 13541, 14117,
15693, 15917, 17133, 17309, 18677, 18933, 19797, 20053, 20373, 20837,
22757, 25709, 25973, 26213, 27317, 34997, 39077
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Conjecture 3.1. The values of d in Table 3.1 are all values with
h(d)--1 and k_24.

We have come close to proving Conjecture 3.1. In fact we have
Theorem 3.1. If k24 then with possibly only one more value re-

maining h(d)--1 if and only if d is an entry in Table 3.1.
Proof. Let A be as above and let Z be a real, non-principal primitive

character modulo A. If R denotes the regulator of Q(/d ) and L(s, Z) is
the associated L-function, then from the well-known analytic class number
formulae we have

2h(d)R=/A L(1, Z) and Rk log /A
(see for example [6]), as well as result of Tatuzawa [13] we get, if h(d)=l
then it is easily verified that k(.655A(/)-)/(log A) when Amax(e/, e’)
with possibly only one exception. Thus, if AB)e’, e=l/log B and f(B)
--[.655Bm-(/g’)]/(log B) then, h(d)=l implies that kf(B) with one pos-
sible exception.

We choose B=2--I for convenience on the machine level beca.use of
word size; i.e., any larger B would force us to use double precision. With
this B we get f(B))24.1. Therefore, for k_24 then h(d))l if A)B. We
now deal with the case where I_A_B.

In the continued fraction expansion of we must have exactly one of
(2.4) or (2.5) holding. Thus we need only sea.rch the continued raction
expansion of up to i--12. We first check whether (2.4) or (2.5) occurs for
A and discard those A with k_24. We also store the values of Q/Qo.
Now, if p<(/A )/2 and (Alp)--l, (where (/) is the Legendre symbol), then
the ideal (p) splits into the product of the prime ideals P and Q in Q(/d )
with , Q being reduced ideals (see [6] for details and definitions). Since
the continued fraction expansion of produces all the reduced ideals in the
principal class (see for example [14], pp. [414-416]), we see that if h(d)--1
then N(c_P)-Q/Qo for some i_k/2. Thus we need only search for a prime
p<(/-)/2 such that p=/=Q/Qo for i_n=k/2 and with (Alp)---1 in order to
be assured that h(d)l. When this simple exclusion method was used for
all numbers in excess of 50,000 for which (2.4) or (2.5) held with n_12, we
found that there were no possible values of A___50,000 such that k24 and
h(d)--1. This entire computational process took about 2 hours a.nd 10 min-
utes on a.n Amdahl 5870 computer. The values of A50,000 such that
k_24 and h(d)=l were then identified using standard class number eval-
uation techniques (see [6]), and turned out to be exactly those listed in
Table 3.1.

Remark 3.1. Although the number of d with h(d)---1 tends to increase
(in some general way but not monotocally however) as k increases, we have
not been able to prove that this is so. I we could, then of course we would
have proved the Gauss conjecture, which can now be reformulated in our
terminology as koo as koo where # k is the number of d with h(d)--1
when has period length k.
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Remark 3.2. As noted in Section 2, if d i,s of ERD-type and h(d)--1
then k_4. Theorem 3.1 shows that if we do not restrict ourselves to ERD-
types then, with one possible exception, h(d)--1 and k_4 if ad only if d
is an entry in Table 2.1 together with the values 61,317, 461, 557, 773 and
1877 for k--3; and 133, 1397 ad 3053 for k-4.

Remark 3.3. In [12] we solved a problem of Yokoi in which all ERD-
types with h(d)--1 were included.

Remark 3.4. The case d----1 (mod 8) appears to be very special. In
what follows we are able to show that those d----1 (mod 8) in Table 3.1 are
precisely those with h(d)=l; i.e., if the exceptional d exists then dl
(mod 8).

The following table lists those d----1 (mod 8) from Table 3.1.

3
4
5
6
7
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Table 3.2

d
17
33
41
57
89, 113, 137
73, 97, 233, 353
129, 161
593, 857, 1217
177, 209
1097, 1553, 2273
201,497, 713
193, 281
217, 249, 329, 393, 537
521,617, 1433
417, 633, 737, 1337, 2537, 3713, 8777
241,313, 449, 953, 1193, 1697
2033
337, 569, 977
489, 1137, 1713, 2217
433, 457, 641,881, 1913, 2393
753, 1473, 3113, 3377, 5753, 8153

Theorem 3.2. Let zl and t be as above and let p be a prime which
splits in Q(/ d ). If 4pTM then h(d):>l.

Proof. Suppose h(d)--1. By hypothesis /4p/, whence,
(/-) / 2. Let m-- [(k+1)/2 then p (/A ) 2 or i-- 1, 2, ., m. Since the
ideal (p)= in Q(/d) then N(c_p)=N()=p so the set of ideals S--
{t, }3= satisfies N(I)(/A ) / 2 for all I e S. Thus S consists of distinct
reduced ideals, (see for example [14], op. cit.). Therefore, together with
the trivial ideal (1)--( we ha.ve 2m+l reduced ideals. Since it is a fact
that application of the continued fraction algorithm to any given reduced
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ideal will produce all of the reduced ideals equivalent to it, ([14], op. cit.),
then k:>2m+l. However m=[(k+l)/2](k--1)/2; whence 2m+lk, a
contradiction.

Corollary 3.1. If d=_l (mod 8) and k<_24 then h(d)=l if and only if
d is an entry in Table 3.2.

Proof. From Theorem 3.2, h(d)l when d2/3, (since 2 splits in
Q(/d )). Since we have already checked on a computer 11 d’s up. to 2-1
as noted in the proof of Theorem 3.1, then the result follows since we are
only concerned with d227, a smaller bound.

We conclude by observing that the dl (mod 8) case is the easiest to
address. For example, Corollary 3.1 illustrates that we can get uncondi-
tional results. Further progress on this case will be published at a later
date since there is much work yet to be done.
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