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Contributions to Uniformly Distributed Functions.
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By Robert F. TICHY
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1. Introduction. Let (M, d) denote a compact, arcwise connected
metric space and/ a positive, regular, normalized Borel measure on M. A
continuous function x" [0, o)M is called /-uniformly distributed (for
short" /-u.d.) if

(1.1) lim 1- :f(x(t))dt----; f(x)d/(x)
T-.o T M

holds for all continuous, real-valued functions f on M. In the case of the
K-dimensional torus M--(R/Z) (with Lebesgue measure/) E. Hlawka [7]
introduced a quantitative measure for u.d., the so called discrepancy

(1.2) Dr(x) "---sup
I :Zj(x(t))dt-/(J)

where the supremum is extended over all intervals J parallel to the coordi-
nate axes and Z denotes the characteristic function of J. It is an easy
observation that x(t) is u.d. if and only if Dr(x) tends to 0 for Tco. For
a detailed survey on the theory of uniform distribution we refer to the
monographs [10] and [8]. In [4] we have generalized the concept of dis-
crepancy to compact metric spaces and obtained some lower bounds. In-
stead of the family of intervals (parallel to the coordinate axes) more
general classes of subsets were considered" so-called discrepancy systems.

In the context of the present paper a discrepancy system

_
is a family

of measurabl’e subsets E_M satisfying the following condition" For every
ope ball B(x, r) with center x e M and radius rO there exist a set E e
and a ball B(x, R) such that
(1.3) B(x, r)_E_B(x,R) and R/r_fl
with an absolute constant ft.

Furthermore we assume the following additional property for the meas-
ure/" There exists a co.nstant KI such that
(1.4) /(B(x, r)) _arK
for every o.pen ball B(x, r), denoting an absolute constant.

Then for every continuous function x" [0, o)M, the discrepancy (with
respect to .) can be defined by

E --*) Dedicated to Prof. E. Hlawka on the occasion of his 75th birthday.
**) This paper was supported by the Austrian Science Foundation project P8274.
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In [4] curves x(t) with arclength s(T) (tending to c for T--c) were consid-
ered and the ollowing lower bound was obtained
(1.6) Dr(, x)_C(.q))(1 Is(T))/(-" (for T_ To).
For special spaces M (torus and sphere) and special discrepancy systems a
detailed investigation o such estimates is, given in [2]. The aim of the
present note is to establish lower bounds for the discrepancy without as-
suming existence of the arclength.

Thus we obtain lower bounds for the discrepancy of ractal sets. For
this purpose we assume in the ollowing a Lipschitz-condition of the type
(1.7) d(x(t+h), x(t))<_Rlh[ (O<_t<T)
with a constant Rr1 and an exponent ’0. It should be mentioned here
that there is a strong connection o such Lipschitz conditions and the
Hausdorff-dimension of the graph x(t) (0tT) (cf. [6]).

Theorem 1. Let be a discrepancy system on. the compact arcwise
connected metric space (M, d) and tz a positive normalized Borel meas.ure
with property (1.4). Assume further that x" [0, c)--M is a continuous

function satisfying a Lipschitz condition of type (1.7) with I/K. Then
there exists a constant C(,/) such that
(1.8) Dr(, x) C(_, p)(1/RrT)/(-/) (T To).
The estimate (1.8) is--in some sense--a generalization of (1.6) to fractal
curves. Such curves can be constructed by different methods. For instance,
in the case of the two-dimensional torus we can take x(t)--t, at+y(t)mod 1,
where a is an irrational and y(t) a periodic fractal function satisfying a
Lipschitz condition as above for ’1/2.

In the special case of the torus (1.6) is due to Taschner [11]. For
special manifold and special discrepancy systems the above estimate can be
improved by Beck’s Fourier-transform method (cf. [1], [4]). Let . (.,
respectively) the discrepancy system of all cubes in arbitrary position (balls,
respectively) on the K-dimensional torus (K_2) with Lebesgue measure and
let Dc be the discrepancy system of all spherical caps on the K-dimensional
sphere (K:>2) with spherical surface measure. Generalizing [4] the follow-
ing improvement of (1.8) can be established"

Theorem 2. In the three cases 9--, -- and =- we have
for any curve satisfying the assumptions of Theorem 1"
(1.9) Dr(_, x)_> C(_q),/)(1/RrT)/z(-/r) (T_ To).

A detailed proof is given in section 2. Further results on the discrep-
ancy of fractals will be established in the subsequent paper [5]. In the
final section 3 the estimates (1.8) and (1.9) are extended to functions
x(t, ..., t.n) in n variables. A first result of this kind is due to Taschner.
Finally a continuous version of a recent result of E. Hlawka [9] concern-
ing the so-called Lipschitz discrepancy is established.

2. Proofs of Theorems 1, 2.

Pro.of of Theorem 1. Let F=Fr denote the graph of x(t), O<_t<_T.
Furthermore we set for0 L(, F) "=card {n" ]open sets U (i=1, ..., n)
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with d(U,) and L- U,@F}, i.e. L(/, F)(Lebesgue number) is the mini-
mal number of open subsets U, of diameter d(U,)_ such that U, ..., U is
a covering of the (compact)set F. For (small) 0 we define h=(3/Rr)/
and t,, =ih, i=0, ..., [T/h]. Because of the Lipschitz condition (1.8)the
balls B,=B(x(t,), ) form a covering of the graph Ft. Then we have the
upper bound
(2.1) L(, Fr)RT
Furthermore there exists a ball B and an open interval E=(a, b)(0, T)
such that
(2.2) x(E)B and b--aT/L(,Fr),
and by (2.1)
(2.3) b a //R/.
Thus we obtain

1 1 Z(x(t))dt_a

((b--a) / T)
Remark 1. The essential tool in the proof is the upper bound (2.1) for

the Lebesgue number. Obviously
aL(y, F) (P),

where (F) denotes the s-dimensional Hausdorff measure (el. [6]). If the
L(, F) eould be estimated also rom above in terms of the Hausdorff meas-
ure then a lower bound for the discrepancy in terms of the Hausdorff-
measure could be established.

Proof of Theorem 2. For simplieity we only consider the discrepancy
system of all eubes (in arbitrary position) contained in the K-dimen-
sional unit interval [0, 1]. We will use J. Beek’s Fourier transform method
and the notation of [2]. We set

(2.4) f(y)= e-’f(x)dx
(2)n

for the Fourier transform of a function f e L(R), where (x, y} denotes the
usual inner product in R. Let x" [0, T]oR/Z denote a continuous func-
tion satisfying a Lipschitz condition (1.7) and define for any measurable
subset A R

(. (=
Pot
the rotated cube r[--r, r](rK-z) and set
(2.6) (A)=(A[--M,M]) and (A)=(A[--M,M]).
Introducing he notations

(2.7) P,=, ,(g-d) (convolution)
and

q
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(T group of rotations, dr normalized Haar measure on T), we derive by
Parseval-Plancherel identity and convolution theorem

(Y)(2.9) (h(q)

where
1 i ],,(y)l.drdr and (y)--dz--dl.(2.10) q(y)----

From [1], p. 134 we immediately obtain for 0qp the lower bound
(2.11) )/Oq((p/q)-
uniformly in all t e R.

From (2.1) we know that L(1/N, Fr)RrTN balls of radius 1/N are
sufficient to cover the graph Ft. Heace there also exists a coveriag of Fr
consisting of _RrTN/r cubes of size 2/N. Now subdivide [0, 1] into
(N/2) cubes (take N even)

[2m 2(m+1)](2.12) Q(m) 1-[ m= (m, m), 0<m N
= N’ N -"

Since a cube of size 2/N can meet at most 2 cubes Q(m), the above cover-
ing can meet at most 2RTN/ cubes Q(m). Now choose N at the mini-
mal even number satisfying 2RTN/rN/2. Thus there exists a cube
Q(m) such that Q(m) Fr is void. Now consider the subcube

1 2 3 2

of such cube Q(m), r<(2NK’/)-’ and x e C(m). Then

(2.13)
for q< (4NK/)-.
lower bound

F,(x) (2r) and O(q) >>Mq
Since N (RT)(-/) we have shown the following

a ) (RT)_(_/)M,(2.14)

where a is a constant depending only on the dimension K. Setting

and the proof of Theorem 2 (in the case of the discrepancy system _q)) is
complete. The other cases can be settled in a similar way (cf. [2]).

(2.15) q= a and p--- (5K/)-(RVT),(-r)
we obtain by (2.10) and (2.11)

(2.16) (p)=nv(y)[@(y)idy
Since F,(x)=O for x [--M--l, M+I] we get from (2.16)

Thus there exists an r e [p, 2p], ar e T and an x e [--M+I, M--l] with

IF,(x)l=
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3. Generalizations. We use the notations t=(t, ., t), T=(T1, ., T),
=(h, ..., h) and [][[--max[h[. For a given discrepancy system and a
normalized Borel measure/ on M the discrepancy of a continuous function
x" [0, oo)n-+M is defined by

(3.1) Dr(,x)’=supll- I:...f:Z(x(t))d$l...dtn-l(E)[.e T1. T
Theorem 3. Let ) be a discrepancy system on the compact arcwise

connected metric space (M, d) and l a positive normalized Borel measure
with property (1.4). Assume further that x" [0, oo)n--+M is a continuous

function satisfying the Lipschitz condition
(3.2) d(x(t+h), x(t))_Rrllh[I (Ot_T, i--1, ..., n),
with exponent n/K and Rr_I. Then there exists a constant C(,
such that
(3.3) Dr(.@, x)CK(.q),/)(1/RrTI... Tn)K/(-n/r) (TTo, i=1, ..., n).

Proo.f. The proof runs along the same lines as the proof of Theorem 1.
Instead of (2.1) we get upper bound
(3.4) L(, Fr)R/rT. T/n
for the Lebesgue number of the set {x(t), O_t_T, i=1, ...,n}. There
exists a ball B of the -cover of Fr and an open set E_ []?.__ [0, Tt] such
that
(3.5) x(E)_B and (E)_/t//R/
where denotes the n-dimensional Lebesgue measure. The same arguments
as in the proof o Theorem 1 yield the desired result.

Theorem 4. In the three cases =2, 2--D and D=2c we have
for any function x(t) satisfying the assumption of Theorem 3"
(3.6) Dr(, x)_C(.q),/)(1/R/TI T,)/(-n).
As in section 2 we only consider the discrepancy system

Proof. The proof runs along the same lines as the proof of Theorem 2.
We use the upper bound (3.4)

L(1/N, F)_R/T TN/
for the minimal number of balls of radius N- which is necessary to cover
the graph Ft. Thus we obtain

( a ) (R _/_/,M(3.7)
(R/rT :n)/(_/) )) T,...T)

instead of (2.14) in the proof of Theorem 2. From this onwards the desired
result follows by the same arguments as in section 2.

In the following we consider the so-called Lipschitz discrepancy of a
function x" [0, c)-+M defined by

(3.8) Drff, x)---sup TR 1 ;e:r - f(x(t))dt- f(x)d/(x)

where the supremum extended over all functions f satisfying a Lipschitz
condition If(Y)--f(z)lgRd(y, z) with fixed exponent ’)0 and fixed constant
R. In the case of sequences on special manifolds M and y= 1 this concept
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of discrepancy was extensivey studied by E. Hlawka (cf. [9]; also connec-
tions to other notions of discrepancy were established there).

Let G be a compact group (with metric t) operating contiuously and
transitively on M and let/ be the Haar measure on G. We assume further
that the measure/ on M is G-invariant and

d(gy g’y) crY(g, g’)
for arbitrary g, g’e G. Then for every y e M the function g(t)y is/-u.d.
oa M. This can be proved by the same arguments as the analogous state-
merit in [9]. Now let e K be a Lipschitz function with exponent ’>0,
i.e.

q(y) 4)(z)l_Rd(y, z)r.
Hence we have for the function Fo(g)=(gy) (for fixed y)
(3.9) iFo(g)_Fo(g,)[_Rd(gy g,y)rRcrt(g, g,)r.
Thus we derive the inequality
(3.10) Dr(Y, g(t)y)gdDr(Y, g(t)).
A umber of other estimates for the Lipschitz discrepancy of functions can
be worked out. For more details we refer to [9]. Finally we mention
here that a lot of other concepts of uniform distribution can be introduced
also in the case of functions: well distribution, weak well distribution and
complete uniform distribution. The first two concepts were studied in
earlier papers, completely uniformly distributed functions will be studied
in the subsequent article [3].
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