9. One Criterion for Multivalent Functions

By Mamoru Nunokawa and Shinichi Hoshino Department of Mathematics, University of Gunma
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1991)

Let P be the class of functions $p(z)$ which are analytic in the unit disk $E=\{z:|z|<1\}$, with $p(0)=1$ and $\operatorname{Re} p(z)>0$ in E.

If $p(z) \in P$, we say $p(z)$ is a Carathéodory function. It is well-known that if $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ is analytic in E and $f^{\prime}(z) \in P$, then $f(z)$ is univalent in $E[1,8]$.

Ozaki [5, Theorem 2] extended the above result to the following :
If $f(z)$ is analytic in a convex domain D and

$$
\operatorname{Re}\left(e^{i \alpha} f^{(p)}(z)\right)>0 \quad \text { in } D
$$

where α is a real constant, then $f(z)$ is at most p-valent in D.
This shows that if $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ is analytic in E and

$$
\operatorname{Re} f^{(p)}(\bar{z})>0 \quad \text { in } E,
$$

then $f(z)$ is p-valent in E.
Nunokawa improved the above result to the following :
Theorem A. Let $p \geqq 2$. If $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ is analytic in E and

$$
\left|\arg f^{(p)}(z)\right|<\frac{3}{4} \pi \quad \text { in } E
$$

then $f(z)$ is p-valent in E (cf. [3]).
Theorem B. Let $p \geqq 2$. If $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ is analytic in E and

$$
\operatorname{Re} f^{(p)}(z)>-\frac{\log (4 / e)}{2 \log (e / 2)} p!\quad \text { in } E
$$

then $f(z)$ is p-valent in E (cf. [4]).
In this paper, we need the following lemmas.
Lemma 1 ([6], Lemma 4). Let $p(z)$ be analytic in E with $p(0)=1$ and $\operatorname{Re} p(z)>1 / 2$ in E.

Then for any function $f(z)$, analytic in E, the function $p(z) * f(z)$ takes its values in the convex hull of $f(z)$, where $p(z) * f(z)$ denotes the convolution or Hadamard product of $p(z)$ with $f(z)$.

Lemma 2 ([7]). Let $p(z)$ be analytic in E with $p(0)=1$. Suppose that $\alpha>0, \beta<1$ and that for $z \in E, \operatorname{Re}\left(p(z)+\alpha z p^{\prime}(z)\right)>\beta$.

Then for $z \in E$,

$$
\operatorname{Re} p(z)>1+2(1-\beta) \sum_{n=1}^{\infty} \frac{(-1)^{n}}{1+\alpha n}
$$

The estimate is best possible for

$$
p_{0}(z)=2 \beta-1+2(1-\beta) \sum_{n=1}^{\infty} \frac{z^{n}(-1)^{n}}{1+\alpha n} .
$$

Proof. For $z \in E$, write $p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}$, so that

$$
\operatorname{Re}\left\{1+\sum_{n=1}^{\infty}(1+\alpha n) p_{n} z^{n}\right\}>\beta
$$

Thus

$$
\operatorname{Re}\left\{1+\frac{1}{2(1-\beta)} \sum_{n=1}^{\infty}(1+\alpha n) p_{n} z^{n}\right\}>\frac{1}{2} .
$$

Now

$$
p(z)=\left\{1+\frac{1}{2(1-\beta)} \sum_{n=1}^{\infty}(1+\alpha n) p_{n} z^{n}\right\} *\left\{1+2(1-\beta) \sum_{n=1}^{\infty} \frac{z^{n}}{1+\alpha n}\right\}
$$

and so by Lemma 1 ,

$$
\operatorname{Re} p(z)>1+2(1-\beta) \sum_{n=1}^{\infty} \frac{(-1)^{n}}{1+\alpha n}
$$

as required. Simple substitution for $p_{0}(z)$ shows that the result is best possible.

Remark. In Lemma 2, if we put

$$
A(\alpha)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{1+\alpha n}, \quad \alpha>0
$$

then we easily have

$$
A(1)=\log (2 / e) \quad \text { and } \quad A(1 / 2)=\log (e / 4)
$$

Lemma 3 ([2], Theorem 8). Let $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ be analytic in E and if there exists a $(p-k+1)$-valent starlike function $g(z)=z^{p-k+1}+$ $\sum_{n=p-k+2}^{\infty} b_{n} z^{n}$ that satisfies

$$
\operatorname{Re} \frac{z f^{(k)}(z)}{g(z)}>0 \quad \text { in } E,
$$

then $f(z)$ is p-valent in E.
Main theorem. Let $p \geqq 3$. If $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ is analytic in E and

$$
\begin{equation*}
\operatorname{Re} f^{(p)}(z)>-\frac{1-4(\log (4 / e))(\log (e / 2))}{4(\log (4 / e))(\log (e / 2))} p!\quad \text { in } E, \tag{1}
\end{equation*}
$$

then $f(z)$ is p-valent in E.
Proof. Let us put

$$
p(z)=f^{(p-1)}(z) /(p!z)
$$

Then, from the assumption (1) and by an easy calculation, we have

$$
\begin{align*}
\operatorname{Re}\left(p(z)+z p^{\prime}(z)\right) & =\operatorname{Re}\left(f^{(p)}(z) / p!\right) \tag{2}\\
& >-\frac{1-4(\log (4 / e))(\log (e / 2))}{4(\log (4 / e))(\log (e / 2))} \quad \operatorname{in} E,
\end{align*}
$$

and $p(0)=1$.
Then, from (2) and Lemma 2, we have

$$
\begin{align*}
\operatorname{Re} p(z) & =\frac{1}{p!} \operatorname{Re} \frac{f^{(p-1)}(z)}{z} \tag{3}\\
& >\frac{\log \left(e^{3} / 16\right)}{2 \log (e / 4)} \doteqdot-0.2943496 \cdots \quad \text { in } E .
\end{align*}
$$

Next, let us put

$$
q(z)=2 f^{(p-2)}(z) /\left(p!z^{2}\right)
$$

Then, from (3) and by an easy calculation, we have

$$
\begin{align*}
\operatorname{Re}\left(q(z)+\frac{1}{2} z q^{\prime}(z)\right) & =\frac{1}{p!} \operatorname{Re} \frac{f^{(p-1)}(z)}{z} \tag{4}\\
& >\frac{\log \left(e^{3} / 16\right)}{2 \log (e / 4)} \quad \text { in } E,
\end{align*}
$$

and $q(0)=1$.
Then, from (4) and Lemma 2, we have

$$
\operatorname{Re} q(z)=\frac{2}{p!} \operatorname{Re} \frac{f^{(p-2)}(z)}{z^{2}}>0 \quad \text { in } E .
$$

This shows that

$$
\operatorname{Re} \frac{z f^{(p-2)}(z)}{z^{3}}>0 \quad \text { in } E .
$$

It is trivial that $g(z)=z^{3}$ is 3 -valently starlike in E. Therefore, from Lemma 3, we see that $f(z)$ is p-valent in E. This completes our proof.

Remark. We have

$$
\frac{\log (4 / e)}{2 \log (e / 2)} \doteqdot 0.62944 \ldots
$$

and

$$
\frac{1-4(\log (4 / e))(\log (e / 2))}{4(\log (4 / e))(\log (e / 2))} \doteqdot 1.10907 \cdots
$$

References

[1] K. Noshiro: On the theory of schlicht functions. J. Fac. Sci. Hokkaido Univ., (1) 2, 129-155 (1934-1935).
[2] M. Nunokawa: On the theory of multivalent functions. Tsukuba J. Math., vol. 11, no. 2, pp. 273-286 (1987).
[3] --: A note on multivalent functions. ibid., vol. 13, no. 2, pp. 453-455 (1989).
[4] -: Differential inequalities and Carathéodory functions. Proc. Japan Acad., 65A, 326-328 (1989).
[5] S. Ozaki: On the theory of multivalent functions. Sci. Rep. Tokyo Bunrika Daigaku, Sec. A, 40, 167-188 (1935).
[6] R. Singh and S. Singh: Convolution properties of a class of starlike functions. Proc. Amer. Math. Soc., 106, 145-152 (1989).
[7] D. K. Thomas and M. Nunokawa: On the Bernardi integral operator (submitting).
[8] S. Warschawski: On the higher derivatives of the boundary in conformal mapping. Trans. Amer. Math. Soc., 38, 310-340 (1935).

