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(1.1)
k=p+l

which are analytic in the unit disk U={z:lz[<l}.
define

(1.2) Iof(Z) (f(z). ) (>0)
Zp

and

Introduction. Let (p) be the class of functions of the form

f(z) zp+ E az (p e ={1, 2, 3, })

For f(z) e (p), we

(1.3) If(z)=l
For f(z) belonging to the class #(1), Thomas [4] has shown
Theorem A. If f(z) e (1) satisfies

(1.4) Re {f’(z)(.fz) ) } >0 (zecU)

for some a (c>O), then
(1.5) Re (I,.f(z)) >=(r) ’(1),
where n e o={0, 1, 2, } and

(_1)+1r-1(1.6) 0<7(r)= --1+2a /ff/-l-) <1.

Equality occurs for the function f(z) defined by

(1.7) f(z)=( f: t-’( 1-t )dt)1/".
l+t

For n=O, (1.5) becomes

{()) (-)(1.8) Re f(z) >___ t,_ .1 t dt
z l+t

--I +2a (--l)+’r-
k--l+o

--1+2 log (1 +r)
r

(z e U),

which reduces to

when a=0.
Also, Hallenbeck [1] has proved
Theorem Bo If f(z) e #(1) satisfies

(1.9) Re {f’(z)}> 0
then
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(1.10) Re (f(z) ) --1 +2 log (1 / r)

>--1+2 log2.
Equality is attained for the function f(z) defined by
(1.11) f(z)= --z+2 log (1 +z).

Remark. Theorem A is a generalization of Theorem B.
Further, Owa and Obradovi6 [3] have given

Theorem C. If f(z) e j(1) satisfies

(1.12) Re {if(z)(f(z) ).-1}0 (z e U)
z

for some ( 0), then

(1.13) Re {( f(z)_" >1_ (ze cU).
z /J l+2a

Remark 2. Theorem A is an improvement o Theorem C.
Some properties of In. We begin with the statement and the proof of

the following result.
Theorem 1. If f(z) e (p) satisfies

(2.1) Re { zf’(z)f(z)- } >0 (zecU)
Zpa

for some (>0), then
(2.2) Re (If(z)) >=(r)>’(1),
where n e o and

(_l)/,r-(2.3) O<:’(r)= --1 +2pa
k---)

<1.

Equality in (2.2) is attained for the function f(z) given by

(2.4) f(z)=(p: t’"-( X--t,,)dt)TM.
Pro,of. Since the condition (2.1) implies that

(2 5) Re f(z)(f(z)
the function h(z) defined by

f’(z)(f(z) )-(2.6) h(z)
PZ- z

satisfies Re (h(z))0 (z e cU) and h(0)=l. It ollows that

(2.7) ( f(z) ) p :z =- t"-’h(t)dt,

that is, that

(2.8) Re (Iof(Z))--Re (( f(z) )"
z /)

Writing z=re and t=Oe in (2.8), we have
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(2.9) Re (Iof(Z))---- p"- Re {h(pe)}dp.

Note that the function h(z) satisfying Re(h(z))0 (ze cU) and h(0)=l
satisfies

(2.10) Re (h(z))> 1--1z] (z e cU)
=+zl

(cf. MacGregor [2, p. 532]). Thus (2.9) leads to

(2.11) Re (Iof(Z))> pa p_,( --p dp
(_l)+r-=-+

It is easy to see that
1 Iof(t)dt}(2.12) Re (If(z))=Re ( I

1 Re {Iof(pe)}dpJor

(_l)+r-

=r,(r).
Therefore, using the mathematical induction, we see that

(_l)+r-(2.3) Re (If(z)) -1+2pa

=r(r).
Let the function (n(r) be defined by

(_l)+,r-(2.14) (r)=pa j) (0rl).

Then (r) is absolutely convergent for n (n e 0) and for r (0rl). Thus
the suitably rearranging pairs of terms in (n(r) give that 1/2(r)1.
This also gives that 0n(r)l. Further, since

(2.15) r(r)=[ (n_,(p)dp (ne),

we have that (r)0 and (r) decreases with r as r tends to I for fixed n,
and increases to 1 when no for fixed r. This completes the proof of
Theorem 1.

Remark. If we take p=l in Theorem 1, then we have Theorem A by
Thomas [4].

Letting a 1/p, Theorem 1 leads to
Corollary 1. If f(z) e (p) satisfies

Re (f’(z)f(z)’/’-’) 0 (z e
then
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Re (If(z)) >=r(r)>
where n e o, Iof(Z)-- f(z)’/P/ z, and

+
O<T(r) --1+2 (--1) lr-I

k=l n
Equality is attained for the function f(z) defined by

f(z) (-- z+2 log (1 + z))".
Taking p=l in Corollary 1, we have
Corollary 2. If f(z) e (1) satisfies Re (if(z))>0 (z e ), then

Re (I,f(z)) T(r)>r(1),
where n e o, Iof(z)= f(z)/ z, and

0<(r) -+2 (-) 1.
k=l n+l

Equality is attained for the function f(z) given by
f(z) z +2 log (1 + z).

Remark. When n=0 in Corollary 2, we have Theorem B by Hallenbeck
[1].

then

Further, making a=l in Theorem 1, we have
Corollary 3. If f(z) e A(p) satisfies

Re f’(Z)_ > 0 (z e cU)
L Zv-i J

Re (Inf(Z)) r(r)>r(1),
where n e 0, Iof(Z) f(z) z, and

(_l)/lr-

Equality is attained for the function f(z) given by (2.4) for a=l.

3.

(3.1)

Integral operator J. Next, for f(z) in (p), we introduce

Jof(z)

and
a+(3.2) Jf(z)= -z [ tJn_lf(t)dt

where a 1.
For the above integral operator J, we derive
Theorem 2. If f(z) e A(p) satisfies

(3.3) Re .f(z) >c (z e cu),

where c<l, then
(3.4)
where n e 1lo and

Re (Jnf(z))

(n e 1l),

(-1) <1.(3.5) 0<’(r)=l+2(a+l)(1--a) (k+a+l)
Equality in (3.4) is attained for the function f(z) defined by
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(3.6)

Proof.
(3.7)

where z re and h(z)-- f(z) zp.
for a--1,

f(z)=azp+(l_a)z,( l--z )i/z
For n=0, (3.4) is trivial. For n=l, we have

rO (i tJf(t)dt) 0-- (i, t -f(t)dt)
z(.f(Z) )eO
z e (+ (1 )h(z)),

Since Re (h(z)) (1-- p) (l + p) (0<=pl),

(3.8) Re (Jf(z))= Re ( a+l i tJo(t)dt}Za+l

a+l (a+(l_a)( l_))dp

hus (8.4) holds rue for =1.
Nut,her, assuming tha (8.4) holds true for any , and letting t=Od,

we have

(3.9) Re (J+f(z))=Re {a+lz I: tJf(t)dt}
al
ra+

.a+l_
rTM

p+2(a+l)(l_a) = (- dp

Also, we see that 0(r)l which completes the assertion of Theorem 2.
Taking a=p/(p+fl), fl>O, in Theorem 2, we have

If f(z) e (p) satisfies
Re {-f(z) }> P (z e ),

z

Corollary 4.

(3.10)

where >0, then
(3.11)
where n e o and

Re (Jnf(z)) Tn(r)> ’n(1),

(3.12) O<7(r)=l+2(a+l)( fl ) (--r) <1.p+fl (k-Fa/l)
Equality in (3.11) is attained for the function f(z) defined by

p+ pz+z lz--Z



No. 3] Certain Integral Operators 93

References

[1]

[2]

[3]

[4]

D. J. Hallenbeck" Convex hulls and extreme points of some families of univalent
functions. Trans. Amer. Math. Soc., 192, 285-292 (1974).

T. H. MacGregor: Function whose derivative has a positive real part. ibid.,
1@4, 532-537 (1962).

S. Owa and M. Obradovi6" Certain subclasses of Bazilevi6 functions of type .
Internat. J. Math. Math. Sci., 9, 347-359 (1986).

D. K. Thomas" A note on Brazilevi6 functions. Res. Inst. Math. Sci. Kyoto Univ.,
714, 18-21 (1990).




