20. A Note on the Artin Map. III

By Takashi Ono

Department of Mathematics, The Johns Hopkins University (Communicated by Shokichi IYANAGA, M. J. A., March 12, 1991)

This is a continuation of our preceding papers [4], [5] which will be referred to as (I), (II), respectively. In (I), we defined, for a finite Galois extension K/k of number fields, a surjective monoid homomorphism (a generalized Artin map)

$$\alpha_{K/k} : I^{+}(S) \longrightarrow M$$

where S is a finite set of finite primes of k containing all primes which ramify in K, $I^{+}(S)$ the free commutative monoid generated by primes $\mathfrak{p} \notin S$ and M the multiplicative monoid generated by averaged class sums (see (1.1)) in the center of the group ring Z[1/n][G], G=G(K/k), n=the order of G^{-1} . In this paper, we study the K-group K(M) of the monoid M and prove that $K(M)\approx G^{ab}=G/G'$, G' being the commutator subgroup of G. Then, taking the K(*) of both sides of (0.1), we get a surjective group homomorphism (0.2) $I(S)\longrightarrow G^{ab}$

which is essentially the Artin map in the maximal abelian subextension K'/k of K/k.

§ 1. K(M(G)). Let G be a finite group and σ_i , $1 \le i \le r$, be a complete set of representatives of conjugate classes of G. Denoting by h_i the cardinality of the conjugate class containing σ_i , consider the averaged class sum:

and the commutative monoid M(G) generated by γ_i , $1 \le i \le r$, in the center of $\mathbb{Z}[1/n][G]$:

$$(1.2) M(G) = \langle \gamma_1, \cdots, \gamma_r \rangle.$$

Let K(M(G)) denote the K-group of M(G).²⁾ The canonical surjective homomorphism $G \rightarrow G^{ab}$ extends, by linearity, to a ring homomorphism $Z[1/n][G] \rightarrow Z[1/n][G^{ab}]$, which induces a surjective monoid homomorphism

(1.3)
$$\varphi: M(G) \longrightarrow M(G^{ab}) = G^{ab}$$

such that $\varphi(\gamma_i) = \sigma_i \mod G'$. Therefore there exists a surjective homomorphism $\bar{\varphi}$ which makes the diagram below commutative:

Unlike (I), (II), we use $I^+(S)$ for monoids of integral ideals and use I(S) for groups of fractional ideals, i.e., $I(S) = K(I^+(S))$. I take this opportunity to thank Messrs. Morishita and Tanabe for discussions on K-groups.

 $^{^{\}scriptscriptstyle (2)}$ As for the K-group (or the Grothendieck group) of monoids, see, e.g., [2], pp. 58-59.

Note that we took the average of the class sum in (1.1).

$$(1.4) M(G) \xrightarrow{\kappa} K(M(G))$$

$$\varphi \downarrow_{\overline{\varphi}} \overline{\varphi}$$

If we adopt, for a commutative monoid M, the mode of definition

(1.5)
$$K(M) \stackrel{\text{def}}{=} (M \times M) / \sim$$

where, for a, b, c, $d \in M$,

$$(a,b) \sim (c,d) \stackrel{\text{def}}{\Longleftrightarrow} adu = bcu$$
 for some $u \in M$

and put [a, b] =class of (a, b) in K(M), then we have $\kappa(a) = [a, 1]$, $\bar{\varphi}([a, b]) = \varphi(a)\varphi^{-1}(b)$ in (1.4).

Now, back to our M=M(G), we want to study $\operatorname{Ker} \bar{\varphi}$. To do this, we had better go to C-characters of G. Let χ_{ν} , $1 \leq \nu \leq r$, be the set of all irreducible C-characters of G. Among them we agree that χ_{ν} , $1 \leq \nu \leq s$, are linear and the rest are nonlinear. For each character χ , we put $\chi^*(\sigma) = \chi(\sigma)/\chi(1)$, $\sigma \in G$. Let $C[G]_0$ be the center of the group ring C[G]. Then by the isomorphism

$$\omega \colon C[G]_0 \xrightarrow{\sim} C^r,$$

we can identify $M\!=\!\langle \gamma_i \rangle$ with the monoid $X\!=\!\langle \xi_i \rangle$ where

(1.7)
$$\xi_i = \omega(\gamma_i) = \begin{pmatrix} \vdots \\ \chi_{\nu}^*(\sigma_i) \\ \vdots \end{pmatrix} \in C^{r,4}$$

For two elements $a, b \in M(G)$, suppose that

(1.8)
$$a = \prod_{i=1}^{r} \gamma_{i}^{e_{i}}, \quad b = \prod_{i=1}^{r} \gamma_{i}^{f_{i}}.$$

Then we have

and so

$$(1.9) [a,b] \in \operatorname{Ker} \bar{\varphi} \iff \prod_{i=1}^{r} \chi_{\nu}(\sigma_{i})^{e_{i}} = \prod_{i=1}^{r} \chi_{\nu}(\sigma_{i})^{f_{i}}, 1 \leq \nu \leq s.$$

Now put $u = \prod_{i=1}^r \gamma_i$. Since (1.7) yields

$$\omega(a) = \prod_{i=1}^r \xi_i^{e_i}, \qquad \omega(b) = \prod_{i=1}^r \xi_i^{f_i},$$

we have

$$\omega(au) = \prod_{i=1}^{r} \xi_{i}^{e_{i}+1} = \begin{pmatrix} \vdots \\ \prod\limits_{i=1}^{r} \chi_{\nu}(\sigma_{i})^{e_{i}+1} \\ \vdots \\ \prod\limits_{i=1}^{r} \chi_{\nu}^{*}(\sigma_{i})^{e_{i}+1} \\ \vdots \\ \vdots \end{pmatrix} \qquad \nu \leq s,$$

⁴⁾ See (I), (7)-(10), also (II), (2.7), (2.8).

By a theorem of Burnside ([1], p. 36, (6.9)), for $\nu > s$, we have $\chi^*_{\nu}(\sigma_i) = 0$ for some $i, 1 \le i \le r$. Hence we get

(1.10)
$$\omega(au) = \begin{bmatrix} \vdots \\ \prod\limits_{i=1}^{r} \chi_{\nu}(\sigma_{i})^{e_{i}+1} \\ \vdots \\ 0 \\ \vdots \end{bmatrix}, \text{ and similarly for } bu.$$

Therefore, if $[a, b] \in \text{Ker } \bar{\varphi}$, we have, from (1.9), (1.10), $\omega(au) = \omega(bu)$ and so au = bu, i.e., $[a, b] \sim [1, 1]$, which shows that $\text{Ker } \bar{\varphi} = 1$. Since $\bar{\varphi}$ is surjective, we get the isomorphism:

$$(1.11) \qquad \qquad \bar{\varphi} \colon K(M(G)) \xrightarrow{\sim} G^{ab}.$$

§ 2. $a_{K/k}$ and $a_{K'/k}$. Taking the K-groups of both sides of (0.1), we obtain a surjective group homomorphism

$$(2.1) \overline{\alpha}_{K/k}: I(S) \longrightarrow K(M).$$

On the other hand, let K' be the maximal abelian subextension of K/k. Then, we have the Artin map (for abelian extensions):

$$\alpha_{K'/k}: I(S) \longrightarrow G(K'/k) = G^{ab}, \qquad G = G(K/k).$$

$$I^{+}(S) \xrightarrow{\alpha_{K/k}} M \xrightarrow{\varphi} I(S) \xrightarrow{\overline{\alpha}_{K/k}} K(M) \xrightarrow{\overline{\varphi}} G^{ab}$$

For $\mathfrak{p} \in I(S)$, we have

$$\overline{\varphi}\overline{\alpha}_{K/k}(\mathfrak{p}) = \varphi(\alpha_{K/k}(\mathfrak{p})) = \left[\frac{K/k}{\mathfrak{P}}\right] \bmod G' = \left[\frac{K'/k}{\mathfrak{P}}\right] = \left(\frac{K'/k}{\mathfrak{p}}\right) = \alpha_{K'/k}(\mathfrak{p}),$$

which shows that

$$(2.2) \overline{\varphi}\overline{\alpha}_{K/k} = \alpha_{K'/k}.$$

Remark. (2.2) implies that $\ker \overline{\alpha}_{K/k} = \ker \alpha_{K'/k} = S(\mathfrak{m}) N_{K'/k} I_{K'}(\mathfrak{m})$, the Takagi group for suitable module \mathfrak{m} in k.⁵⁾

References

- [1] Feit, W.: Characters of Finite Groups. Benjamin, New York-Amsterdam (1967).
- [2] Hilton, P.: General Cohomology Theory and K-Theory. London Math. Soc. Lecture Note Series 1, Cambridge Univ. Press (1971).
- [3] Iyanaga, S.: Number Theory. North-Holland, Amsterdam (1975).
- [4] Ono, T.: A note on the Artin map. Proc. Japan Acad., 65A, 304-306 (1989).
- [5] —: A note on the Artin map. II. ibid., 66A, 132-136 (1990).

⁵⁾ See, e.g., [3].