18. Affirmative Solution of a Conjecture Related to a Sequence of Shanks

By R. A. MOLLIN^{*)} and H. C. WILLIAMS^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., March 12, 1991)

Abstract: In [6] the authors conjectured that if $d\equiv 1 \pmod{8}$ is positive, square-free and all Q_i 's (see below) are powers of 2 in the continued fraction expansion of $(1+\sqrt{d})/2$ then the class number h(d) of $Q(\sqrt{d})$ is equal to 1 if and only if $d \in \{17, 41, 113, 353, 1217\}$. The purpose of this note is to prove this conjecture and show how it relates to results in the literature including work of Shanks [7] concerning certain special forms. Moreover we solve the class number 2, 3, and 4 problems for these forms. Finally, we leave a conjecture for other forms at the end.

§1. Notations and preliminaries. Let d be a positive square-free integer and let $w_d = (\sigma - 1 + \sqrt{d})/\sigma$ where $\sigma = \begin{cases} 1 & \text{if } d \equiv 2, 3 \pmod{4} \\ 2 & \text{if } d \equiv 1 \pmod{4} \end{cases}$. The discriminant of $K = Q(\sqrt{d})$ is $\Delta = (2/\sigma)^2 d$, and the maximal order in K is denoted \mathcal{O}_K . Let $w_d = \langle a, \overline{a_1, a_2, \cdots, a_k} \rangle$ be the continued fraction expansion of w_d . Here $a_0 = a = \lfloor w_d \rfloor$, (where $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x); and $a_i = \lfloor (P_i + \sqrt{d})/Q_i \rfloor$ for $i \geq 1$ where: $(P_0, Q_0) = (\sigma, \sigma - 1)$ and $P_{i+1} = a_i Q_i - P_i$; $Q_{i+1} Q_i = d - P_{i+1}^2$ for $i \geq 0$.

The Legendre symbol will be denoted by (/). Finally for the theory of reduced ideals used herein the reader is referred to [5] or [8].

§2. Q_i 's as powers of 2. The conjecture posed in [6] is that any square-free $d\equiv 1 \pmod{8}$ with all Q_i 's as powers of 2 and h(d)=1 can only hold for $d \in \{17, 41, 113, 252, 1217\}$. In [1] we classified for a general square-free d all those forms for which all the Q_i/Q_0 's are powers of a given integer c>1. In particular for the case where $d\equiv 1 \pmod{8}$ and all the \mathcal{O}_{κ} -primes above 2 are principal then all Q_i 's are powers of 2 if and only if $d=(2^s+1)^2 + 2^{s+2}$, where s>0 and k=1+2s.

Theorem 2.1. If $d \equiv 1 \pmod{8}$ and all Q_i 's are powers of 2 then h(d) = 1 if and only if $d \in \{17, 41, 113, 353, 1217\}$.

Proof. We will now show the remarkable fact that d is a quadratic residue of 127 if $d=(2^n+1)^2+2^{n+2}$, (observe: $127=2^n-1$).

Let $n \equiv m_0 \pmod{7}$ where $0 \leq m_0 \leq 6$.

If $m_0=0$ then $d\equiv 32^2 \pmod{127}$; If $m_0=1$ then $d\equiv 25^2 \pmod{127}$;

^{*)} Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada, T2N IN4.

^{**} Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2.

If $m_0=2$ then $d\equiv 26^2 \pmod{127}$; If $m_0=3$ then $d\equiv 42^2 \pmod{127}$; If $m_0=4$ then $d\equiv 37^2 \pmod{127}$; If $m_0=5$ then $d\equiv 57^2 \pmod{127}$; If $m_0=6$ then $d\equiv 6^2 \pmod{127}$.

Now since (d/127)=1, we have that 127 splits in $Q(\sqrt{d})$. Since $N(\mathcal{P}) = 127$ for \mathcal{P} an \mathcal{O}_{κ} -prime above 127 when h(d)=1 then $127 < \sqrt{d}/2$ implies that \mathcal{P} is reduced (by [2], [5] or [8]), so $127 = Q_i/2$ for some *i*, a contradiction. If $127 \ge \sqrt{d}/2$ then $d \le 64$, 516. A computer check up to that bound reveals only those on the list.

Remark 2.1. Observe that $d = (2^n+1)^2 + 2^{n+2} = (2^n+3)^2 - 8$, the forms studied by Shanks in [7]. Thus we have not only affirmatively settled the conjecture in [6] but also some queries raised by Shanks therein.

Remark 2.2. It can be easily shown using the results of [5] that if $h=h((2^n+3)^2-8)$ then n<7h+1. Thus a computer check has allowed us to determine the following.

Theorem 2.2. Let $d = (2^n+3)^2 - 8$. Then:

(I) h(d)=2 if and only if d=17153

- (II) h(d) = 3 if and only if $d \in \{4481, 67073\}$
- (III) $h(d) \neq 4$ for any n.

Thus to solve the class number problem for d in general is limited now only by computational considerations.

In [1] we showed that if $d \not\equiv 1 \pmod{4}$ has all Q_i 's as powers of a prime p > 2 then h(d) > 1. Moreover if $d \not\equiv 1 \pmod{4}$ and all Q_i 's are powers of 2 we leave the reader with:

Conjecture 2.1. If $d \not\equiv 1 \pmod{4}$ and all Q_i 's are powers of 2 then h(d) = 1 if and only if $d \in \{2, 3, 6, 11, 38, 83, 227\}$.

In [1] we showed that if $d \not\equiv 1 \pmod{4}$ and all Q_i 's are powers of 2 then h(d) = 1 implies $d = l^2 + 2$. Thus, in consideration of our solution of the class number one problem for ERD-types (with one possible exception) in [4], then Conjecture 2.1 has been shown to hold with possibly only one more value remaining. It seems to the authors to be virtually intractible to remove this exceptional value.

References

- [1] R. A. Mollin: Powers in continued fractions and class numbers of real quadratic fields (to appear).
- [2] ——: Class numbers and the divisor function (to appear).
- [3] R. A. Mollin and H. C. Williams: Class number problems for real quadratic fields. Number Theory and Cryptography (ed. J. H. Loxton). London Math. Soc. Lecture Note Series, 154, 175-195 (1990).
- [4] ——: Solutions of the class number one problem for real quadratic fields of extended Richaud-Degert type (with one possible exception). Number Theory (ed. R. A. Mollin). Walter de Gruyter, Berlin, pp. 417-425 (1990).

No. 3]

- [5] ——: Computation of the class number of a real quadratic field (to appear: Advances in the Theory of Computation and Computational Mathematics).
- [6] ——: Powers of 2, continued fractions, and the class number one problem for real quadratic fields $Q(\sqrt{d})$, with $d \equiv 1 \pmod{8}$ (to appear in the Math. Heritage of C. F. Gauss (ed. G. M. Rassias)).
- [7] D. Shanks: On Gauss's class number problems. Math. Comp., 23, 151-163 (1969).
- [8] H. C. Williams and M. C. Wonderlick: On the parallel generation of the residues for the continued fraction factoring algorithm. Math. Comp., 177, 405-423 (1987).