18. Affirmative Solution of a Conjecture Related to a Sequence of Shanks

By R. A. Mollin*) and H. C. Williams**)
(Communicated by Shokichi Iyanaga, m. J. a., March 12, 1991)

Abstract

In [6] the authors conjectured that if $d \equiv 1(\bmod 8)$ is positive, square-free and all Q_{i} 's (see below) are powers of 2 in the continued fraction expansion of $(1+\sqrt{d}) / 2$ then the class number $h(d)$ of $Q(\sqrt{d})$ is equal to 1 if and only if $d \in\{17,41,113,353,1217\}$. The purpose of this note is to prove this conjecture and show how it relates to results in the literature including work of Shanks [7] concerning certain special forms. Moreover we solve the class number 2, 3, and 4 problems for these forms. Finally, we leave a conjecture for other forms at the end.

§ 1. Notations and preliminaries. Let d be a positive square-free integer and let $w_{d}=(\sigma-1+\sqrt{d}) / \sigma$ where $\sigma=\left\{\begin{array}{l}1 \text { if } d \equiv 2,3(\bmod 4) \\ 2 \text { if } d \equiv 1(\bmod 4)\end{array}\right\}$. The discriminant of $K=Q(\sqrt{d})$ is $\Delta=(2 / \sigma)^{2} d$, and the maximal order in K is denoted \mathcal{O}_{K}. Let $w_{a}=\left\langle a, \overline{a_{1}, a_{2}, \cdots, a_{k}}\right\rangle$ be the continued fraction expansion of w_{d}. Here $a_{0}=a=\left\lfloor w_{d}\right\rfloor$, (where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to $x)$; and $\left.a_{i}=\mathrm{l}\left(P_{i}+\sqrt{d}\right) / Q_{i}\right\rfloor$ for $i \geq 1$ where: $\left(P_{0}, Q_{0}\right)=(\sigma, \sigma-1)$ and $P_{i+1}=a_{i} Q_{i}-P_{i} ; Q_{i+1} Q_{i}=d-P_{i+1}^{2}$ for $i \geq 0$.

The Legendre symbol will be denoted by (/). Finally for the theory of reduced ideals used herein the reader is referred to [5] or [8].
§2. \boldsymbol{Q}_{i} 's as powers of 2. The conjecture posed in [6] is that any square-free $d \equiv 1(\bmod 8)$ with all Q_{i} 's as powers of 2 and $h(d)=1$ can only hold for $d \in\{17,41,113,252,1217\}$. In [1] we classified for a general squarefree d all those forms for which all the Q_{i} / Q_{0} 's are powers of a given integer $c>1$. In particular for the case where $d \equiv 1(\bmod 8)$ and all the \mathcal{O}_{K}-primes above 2 are principal then all Q_{i} 's are powers of 2 if and only if $d=\left(2^{s}+1\right)^{2}$ $+2^{s+2}$, where $s>0$ and $k=1+2 s$.

Theorem 2.1. If $d \equiv 1(\bmod 8)$ and all Q_{i} 's are powers of 2 then $h(d)$ $=1$ if and only if $d \in\{17,41,113,353,1217\}$.

Proof. We will now show the remarkable fact that d is a quadratic residue of 127 if $d=\left(2^{n}+1\right)^{2}+2^{n+2}$, (observe : $127=2^{7}-1$).

Let $n \equiv m_{0}(\bmod 7)$ where $0 \leq m_{0} \leq 6$.

$$
\begin{aligned}
& \text { If } m_{0}=0 \quad \text { then } d \equiv 32^{2} \quad(\bmod 127) \text {; } \\
& \text { If } m_{0}=1 \quad \text { then } d \equiv 25^{2} \quad(\bmod 127) ;
\end{aligned}
$$

[^0]\[

$$
\begin{array}{lll}
\text { If } m_{0}=2 & \text { then } d \equiv 26^{2} & (\bmod 127) ; \\
\text { If } m_{0}=3 & \text { then } d \equiv 42^{2} & (\bmod 127) ; \\
\text { If } m_{0}=4 & \text { then } d \equiv 37^{2} & (\bmod 127) ; \\
\text { If } m_{0}=5 & \text { then } d \equiv 57^{2} & (\bmod 127) ; \\
\text { If } m_{0}=6 & \text { then } d \equiv 6^{2} & (\bmod 127) .
\end{array}
$$
\]

Now since $(d / 127)=1$, we have that 127 splits in $Q(\sqrt{ } \bar{d})$. Since $N(\mathscr{P})$ $=127$ for \mathscr{P} an \mathcal{O}_{K}-prime above 127 when $h(d)=1$ then $127<\sqrt{d} / 2$ implies that \mathscr{P} is reduced (by [2], [5] or [8]), so $127=Q_{i} / 2$ for some i, a contradiction. If $127 \geq \sqrt{d} / 2$ then $d \leq 64,516$. A computer check up to that bound reveals only those on the list.

Remark 2.1. Observe that $d=\left(2^{n}+1\right)^{2}+2^{n+2}=\left(2^{n}+3\right)^{2}-8$, the forms studied by Shanks in [7]. Thus we have not only affirmatively settled the conjecture in [6] but also some queries raised by Shanks therein.

Remark 2.2. It can be easily shown using the results of [5] that if $h=h\left(\left(2^{n}+3\right)^{2}-8\right)$ then $n<7 h+1$. Thus a computer check has allowed us to determine the following.

Theorem 2.2. Let $d=\left(2^{n}+3\right)^{2}-8$. Then:
(I) $h(d)=2$ if and only if $d=17153$
(II) $h(d)=3$ if and only if $d \in\{4481,67073\}$
(III) $\quad h(d) \neq 4$ for any n.

Thus to solve the class number problem for d in general is limited now only by computational considerations.

In [1] we showed that if $d \not \equiv 1(\bmod 4)$ has all Q_{i} 's as powers of a prime $p>2$ then $h(d)>1$. Moreover if $d \not \equiv 1(\bmod 4)$ and all Q_{i} 's are powers of 2 we leave the reader with:

Conjecture 2.1. If $d \not \equiv 1(\bmod 4)$ and all Q_{i} 's are powers of 2 then $h(d)=1$ if and only if $d \in\{2,3,6,11,38,83,227\}$.

In [1] we showed that if $d \equiv 1(\bmod 4)$ and all Q_{i} 's are powers of 2 then $h(d)=1$ implies $d=l^{2}+2$. Thus, in consideration of our solution of the class number one problem for ERD-types (with one possible exception) in [4], then Conjecture 2.1 has been shown to hold with possibly only one more value remaining. It seems to the authors to be virtually intractible to remove this exceptional value.

References

[1] R. A. Mollin: Powers in continued fractions and class numbers of real quadratic fields (to appear).
[2] -: Class numbers and the divisor function (to appear).
[3] R. A. Mollin and H. C. Williams: Class number problems for real quadratic fields. Number Theory and Cryptography (ed. J. H. Loxton). London Math. Soc. Lecture Note Series, 154, 175-195 (1990).
[4] --: Solutions of the class number one problem for real quadratic fields of extended Richaud-Degert type (with one possible exception). Number Theory (ed. R. A. Mollin). Walter de Gruyter, Berlin, pp. 417-425 (1990).
[5] -: Computation of the class number of a real quadratic field (to appear: Advances in the Theory of Computation and Computational Mathematics).
[6] --: Powers of 2, continued fractions, and the class number one problem for real quadratic fields $Q(\sqrt{ } \bar{d})$, with $d \equiv 1(\bmod 8)$ (to appear in the Math. Heritage of C. F. Gauss (ed. G. M. Rassias)).
[7] D. Shanks: On Gauss's class number problems. Math. Comp., 23, 151-163 (1969).
[8] H. C. Williams and M. C. Wonderlick: On the parallel generation of the residues for the continued fraction factoring algorithm. Math. Comp., 177, 405-423 (1987).

[^0]: *) Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada, T2N IN4.
 **) Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2.

