17. Noetherian Property of Inductive Limits of Noetherian Local Rings

By Tetsushi OGOMA*)

Department of Mathematics, Kochi University

(Communicated by Kunihiko KODAIRA, M. J. A., March 12, 1991)

The purpose of this note is to show the following,

Theorem 1. Let $\{(A_{\lambda}, m_{\lambda}) | \lambda \in A\}$ be a filtered inductive system of noetherian local rings such that $m_{\lambda}A_{\mu} = m_{\mu}$ for $\mu \ge \lambda$. Then the inductive limit A of the system is noetherian.

The motivation of proving Theorem 1 came from the lecture by Professor Nagata at Symposium on Commutative Algebra in Gifu. That is, he mentioned the following, which got to have been known (cf. [2, ch. 0_{III} Lemma 10.3.1.3], [1, ch. *III* § 5 exerc. 7]).

Theorem. Let $\{(A_i, m_i) | i \in N\}$ be a chain of noetherian local rings such that for any $i \in N$

1) $m_i A_{i+1} = m_{i+1}$

2) A_{i+1} is flat over A_i .

Then the union $\cup A_i$ is a noetherian local ring.

If we drop the assumption 1) in the Theorem, then we easily construct a system such that the union $\bigcup A_i$ is non-noetherian. He asked what about the assumption 2)?

Since there is a system $\{(A_i, m_i)\}$ of noetherian local rings with non-flat morphisms such that $m_i A = m$ with A non-noetherian where $A = \bigcup A_i$ and $m = \bigcup m_i$, (cf. [3, Appendix A1] and [4, § 2]), 2) might seem to be necessary. But we shall show that 1) is sufficient.

Now we begin with a lemma.

Lemma 2. Let (A, m) be a quasi-local ring such that m is finitely generated, and let I be an ideal of A. Then the completion $(\widehat{A/I})$ of A/I is isomorphic to $\widehat{A}/I\widehat{A}$ with the completion \widehat{A} of A.

Proof. Since \hat{A} is noetherian [3, (31.7) Corollary], $I\hat{A}$ is closed in \hat{A} by [3, (16.7) Theorem] and $\hat{A}/I\hat{A}$ is a complete local ring. On the other hand, since $(\hat{A}/I\hat{A})/m^n(\hat{A}/I\hat{A}) = \hat{A}/I\hat{A} + m^n\hat{A} = A/I + m^n$, we have $(\widehat{A/I}) = (\widehat{A}/I\hat{A}) = \hat{A}/I\hat{A}$ by the projective limit characterization of completion.

Proposition 3. Under the assumption of the Theorem 1 the natural homomorphism $\varphi: A \rightarrow \hat{A}$ to the completion \hat{A} is injective.

Proof. Let $k_{\lambda} = A_{\lambda}/m_{\lambda}$ be the residue field of A_{λ} , then $\{k_{\lambda} | \lambda \in A\}$ forms

^{*)} This work is partially supported by the Grant-in-Aid for Research C-02804001 from the Ministry of Education, Science and Culture, Japan.

a filtered inductive system with inductive limit, say k, which is isomorphic to A/m.

Then $gr_{m_{\lambda}}A_{\lambda} \rightarrow gr_{m_{\mu}}A_{\mu}$ $(\mu \ge \lambda)$ induces a surjective homomorphism $gr_{m_{\lambda}}A_{\lambda} \otimes_{A_{\lambda}}k \rightarrow gr_{m_{\mu}}A_{\mu} \otimes_{A_{\mu}}k$ because $gr_{m_{\lambda}}A_{\lambda} \otimes_{A_{\lambda}}A_{\mu} \rightarrow gr_{m_{\mu}}A_{\mu}$ is surjective.

Thus the system $\{gr_{m_{\lambda}}A_{\lambda}\otimes_{A_{\lambda}}k \mid \lambda \in A\}$ forms a filtered inductive system of noetherian graded rings whose morphisms are surjective. Thus there exists a μ_0 such that for any $\lambda \ge \mu_0$, $gr_{m_{\lambda}}A_{\lambda}\otimes_{A_{\lambda}}k \rightarrow gr_mA$ is an isomorphism because of the noetherian property. In particular $gr_{m_{\lambda}}A_{\lambda} \rightarrow gr_mA$ is injective.

Let x be an element of A such that $\varphi(x)=0$. We may assume x is represented by an element y of A_{λ} . We may assume $\lambda \ge \mu_0$.

Then we have y=0. Really, otherwise, then there exists an integer n such that $y \in m_{\lambda}^{n} \setminus m_{\lambda}^{n+1}$ because A_{λ} is noetherian. Now the image by $gr_{m\lambda}A_{\lambda} \to gr_{m}A$ of the class of y in $m_{\lambda}^{n}/m_{\lambda}^{n+1}$ is not zero, which means the class of x in m^{n}/m^{n+1} is not zero. But this contradicts the assumption $\varphi(x)=0$. Thus y=0 and φ is injective.

Proof of the Theorem 1. Let I be an ideal of A. Since \hat{A} is noetherian, $I\hat{A}$ is finitely generated, say $I\hat{A}=J\hat{A}$, with an ideal J of A_{λ_0} .

We will show that I=JA. To see this, consider the inductive system $\{A_{\lambda}/JA_{\lambda} | \lambda \in \Lambda, \lambda \ge \lambda_0\}$ with the inductive limit A/JA. Now $(\widehat{A/J}A) = \widehat{A}/J\widehat{A}$ by Lemma 2 and I/JA is contained in the kernel of the natural homomorphism $A/JA \rightarrow (\widehat{A/J}A)$ because $(I/JA)(\widehat{A/J}A) = I\widehat{A}/J\widehat{A} = 0$.

On the other hand, this map is injective by Proposition 3 applying the system $\{(A_{\lambda}/JA_{\lambda}, m_{\lambda}/JA_{\lambda})\}$, and we have I/JA=0, that is, I=JA.

References

- [1] Burubaki: Algébre Commutative. Hermann (1961).
- [2] A. Grothendieck: Éléments de Géométrie Algébrique. Publ. I.H.E.S. (1961).
- [3] M. Nagata: Local Rings. John Wiley (1962); Rep. Ed. Krieger (1976).
- [4] T. Ogoma: Some examples of rings with curious formal fibers. Mem. Fac. Sci. Kochi Univ., 1, 17-22 (1980).

No. 3]