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0. Introduction. The purpose of the present paper is to report
some partial solutions to the following conjectures. Details [5] will appear
elsewhere.

Conjecture MP. Any Moishezon complex manifold homeo.morphic to
Pc is isomorphic to P.

Conjecture DP. Any complex analytic (global) deformatio.n of P is
isomorphic to. P.

Conjecture MP has been settled by Hirzebruch-Kodaira [1] and Yau
[10] when the manifold under consideration is projective or Khlerian.

Recently Kollhr [2] and the author [3] solved (MP) in the affirmative,
each supplementing the other. Peternell [6] [7] also asserts (MP).

(0.1) Theorem [2] [3]. Any Moishezon threefold homeomorphic to
P is isomorphic to. PC

(0.2) Theorem. Let X be a Moishezon manifold of dimension n.
Assume that there is a line bundle L on X such that c(X)=dc(L) (d_>n+l),
h(X, Ox(L))>_n+l, and (L)=n. If a complete intersection o.f general
(n--1)-members of the complete linear system ILl is nonempty outside the
base locus Bs ILl then X is isomorphic to. P

(0.3) Theorem. Let X be a Moishezon manifold homeomorphic to
P, and L a line bundle on X with L=I. Assume h(X, Ox(L)) >_n+ l. If
a complete intersection of general (n--1)-members of [LI is nonempty out-
side Bs ILl then X is isomorphic to. P(7"

(0.4) Theorem. Let X be a Moishezon fourfold, and L a line bundle
on X. Assume that PicX=ZL, c(X)=dc(L) (d_>5) and h(X, Ox(L))>_5.
Then X is isomorphic to P.

(0.5) Theorem. Let X be a Moishezon fourfold homeomo.rphic to P,
and L a line bundle on X with L’=I. Assume h(X, Ox(L))>_3. Then X
is isomorphic to, P.

(0.6) Corollary. Any complex analytic (global) deformation of P is
isomo.rphic to. P.

1. A complete intersection and a subadjunction formula. (1.1)
Let X be a compact complex manifold of dimension n, a line bundle L on X
with h(X, Ox(L))>_n--1. Let V be a linear ,subspace of H(X, L) of dimen-
sion n--l, l a scheme-theoretic complete intersection associated with
V. More precisely, the ideal sheaf of Ox defining is given by I-,e, sOx.
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(1.2) Lemma. Assume c(X)=dc(L). Let C be an irreducible curve-
component of l, along which l, is reduced generically. If d_n+l, and if
LCI,_ then d=n+l, LC=I, CP, Nc/xOc(1)e(n-) and C is a connected
component of l,. Moreover if C is not contained in Bs ]L I, then C Bs ILl
consists o.f at most one point.

(1.3) Theorem (Subadjunction formula). Let X be a compact complex

manifold of dimension n, D a reduced irreducible divisor of X (1.<:im).
Assume that the scheme-theoretic complete intersection rD...D
has an irreducible component Z=Z of dimension n--m along which r is
reduced generically. Let " Y--Z be the no.rmalizatio.n of Z. Then there
exists an effective Weil divisor zl o.f Y such that

(1.3.1) K=*(Kx+D+ +D)-A,
(1.3.2) supp (r.A) is the union of all the Weil divisors o. Z whose sup-

ports are contained in either Sing Z or one of. the irreducible components
of r other than Z.

The condition (1.3.2) implies that supp A= if and only if Z is smooth
in codimension one and moreover Z intersect the irreducible components of
r other than Z along some subvarieties of at most (n-m-2) dimension.

2. Proof of (0.5). (2.1) Lemma. Under the assumptions in (0.5),
let D and D’ be distinct members of [L I, r the scheme-theoretic complete
intersection D D’. Then we have

(2.1.1) PicX=ZL, Kx--5L,
(2.1.2) H(r, O)C,
(2.1.3)
(2.2) Lemma. Let D and D’ be general members of ILl, and

D DD’. Let Z--Zro be an irreducible component of r along which r is
reduced generically. If ZBs[LI, then rZP and LOe(1).

Proof. Let " Y-+Z be the normalization of Z, f" S-+Y the minimal
resolution of Y and let g=,. f. Then there exist by (1.3) aa effective Weil
divisor z/ on Y, effective Cartier divisors E and G on S with no common
components such that the canonical sheaves Kr and Ks are given by

Kr-_Or(--3*L--A), Ks--Os(--3g*L--E--G)
with f.(E)-zi, f,(G)=0. Let 27 "-f-’(A) U g-’(Sing Z).

Since h(X,L)>_3 and ZC:BslL], g*L is effective. By P(S)-0, SP
or S is ruled. Assume that S is ruled. Let u" S-+W be a morphism of S
onto a curve W with general fiber FP. Let H e g*lLI. We note that
E+GcHo for general D and D’. We also have,

2 KsF-F KsF (3H-E-G)F.
It follows that HF--O, (E+G)F-2. However this contradicts

GcH. Therefore SYP and G---0. Since H>__Er and Ks----
3H--E, we see that Os(H)Oe(1), E-O. Since E-O, Z has by (1.3) at
worst isolated singularities.

There exists D" e ILl such that g*(Z D")--H by the choice of H. Let
D D’ gl D" be a scheme-theoretic complete intersection, and C-g(H)o.
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Since g*D"=H_P and g is an isomorphism on S\X, we have H\XC\
g(X), so that is reduced generically along C. C is isomorphic to Z D"
on (Z\g(X)) D". Namely Ic=/Ic =I along C (Z\g(X)). We have

1 (H2) (g*(L)H)s (Lg.(H))x (LC)z.
Therefore we can apply (1.2) to X, C and to infer that C is a connected

component of and that l_C_P along C. If Sing rr is nonempty, then
SingrrecBslL[. Hence ZQSingrrocZQD" (_C). Consequently Z
Sing roC. As C is a connected component of l, this shows that Z is a
connected component of r. In fact, if not, there is an irreducible compo-
nent Z’ (=/=Z) of r meeting Z. Then we choose a point p e Z Z’. We note
that Z Z’ is finite by E 0. Hence since p e Z Sing ro C, Z’ D" con-
tains an irreducible component (a curve or a surface) of meeting C. This
contradicts that C is a connected component of 1.

However h(r, 0)=1 by (2.1). Hence ZZVr. AS r is Gorenstein and
reduced generically along Z, r is reduced everywhere and r_Z. Since a
prime Cartier divisor C of Z is smooth, so is Z along C. As SingZZ
Sing rro C, it follows that Z is smooth everywhere. Thus we see P_S

_
Y_Z_r. Q.E.D.

(2.3) Completion of the proof of (0.5). Bertini’s theorem guarantees
existence of r=D D’ with a component Z of r as in (2.2). By (2.1.3) and
(2.2), BslLI=Bs[L]=BslOe2(1)I= . We have also h(X, L)=h(v, L)+2=5
and (L)x=(H’)s=I. Consequently X_P by an easy argument. Q.E.D.
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