16. A Subadjunction Formula and Moishezon Fourfolds Homeomorphic to \mathbf{P}_{c}^{4}

By Iku Nakamura
Department of Mathematics, Hokkaido University
(Communicated by Kunihiko Kodaira, m. J. A., March 12, 1991)

§0. Introduction. The purpose of the present paper is to report some partial solutions to the following conjectures. Details [5] will appear elsewhere.

Conjecture MP $_{n}$. Any Moishezon complex manifold homeomorphic to $\boldsymbol{P}_{\boldsymbol{C}}^{n}$ is isomorphic to $\boldsymbol{P}_{\boldsymbol{C}}^{n}$.

Conjecture $\boldsymbol{D P}_{\boldsymbol{n}}$. Any complex analytic (global) deformation of $\boldsymbol{P}_{\boldsymbol{C}}^{n}$ is isomorphic to $\boldsymbol{P}_{\boldsymbol{c}}^{n}$.

Conjecture $M P_{n}$ has been settled by Hirzebruch-Kodaira [1] and Yau [10] when the manifold under consideration is projective or Kählerian.

Recently Kollár [2] and the author [3] solved ($M P_{3}$) in the affirmative, each supplementing the other. Peternell [6] [7] also asserts ($M P_{3}$).
(0.1) Theorem [2] [3]. Any Moishezon threefold homeomorphic to \boldsymbol{P}_{C}^{3} is isomorphic to \boldsymbol{P}_{C}^{3}.
(0.2) Theorem. Let X be a Moishezon manifold of dimension n. Assume that there is a line bundle L on X such that $c_{1}(X)=d c_{1}(L)(d \geq n+1)$, $h^{0}\left(X, O_{X}(L)\right) \geq n+1$, and $\kappa(L)=n$. If a complete intersection of general ($n-1$)-members of the complete linear system $|L|$ is nonempty outside the base locus $\mathrm{Bs}|L|$, then X is isomorphic to \boldsymbol{P}_{c}^{n}.
(0.3) Theorem. Let X be a Moishezon manifold homeomorphic to P_{C}^{n}, and L a line bundle on X with $L^{n}=1$. Assume $h^{0}\left(X, O_{X}(L)\right) \geq n+1$. If a complete intersection of general ($n-1$)-members of $|L|$ is nonempty outside $\mathrm{Bs}|L|$, then X is isomorphic to \boldsymbol{P}_{c}^{n}.
(0.4) Theorem. Let X be a Moishezon fourfold, and L a line bundle on X. Assume that Pic $X=Z L, c_{1}(X)=d c_{1}(L)(d \geq 5)$ and $h^{0}\left(X, O_{X}(L)\right) \geq 5$. Then X is isomorphic to \boldsymbol{P}_{c}^{4}.
(0.5) Theorem. Let X be a Moishezon fourfold homeomorphic to P_{C}^{4}, and L a line bundle on X with $L^{4}=1$. Assume $h^{0}\left(X, O_{X}(L)\right) \geq 3$. Then X is isomorphic to $\boldsymbol{P}_{\boldsymbol{C}}^{4}$.
(0.6) Corollary. Any complex analytic (global) deformation of $\boldsymbol{P}_{\boldsymbol{C}}^{4}$ is isomorphic to $\boldsymbol{P}_{\boldsymbol{C}}^{4}$.
§1. A complete intersection l and a subadjunction formula. (1.1) Let X be a compact complex manifold of dimension n, a line bundle L on X with $h^{0}\left(X, O_{X}(L)\right) \geq n-1$. Let V be a linear subspace of $H^{0}(X, L)$ of dimension $n-1, l:=l_{V}$ a scheme-theoretic complete intersection associated with V. More precisely, the ideal sheaf of O_{x} defining l is given by $I_{l}=\sum_{s \in V} s O_{x}$.
(1.2) Lemma. Assume $c_{1}(X)=d c_{1}(L)$. Let C be an irreducible curvecomponent of l_{V} along which l_{V} is reduced generically. If $d \geq n+1$, and if $L C \geq 1$, then $d=n+1, L C=1, C \simeq P^{1}, N_{C / X} \simeq O_{C}(1)^{\oplus(n-1)}$ and C is a connected component of l_{V}. Moreover if C is not contained in $\mathrm{Bs}|L|$, then $C \cap \mathrm{Bs}|L|$ consists of at most one point.
(1.3) Theorem (Subadjunction formula). Let X be a compact complex manifold of dimension n, D_{i} a reduced irreducible divisor of $X(1 \leq i \leq m)$. Assume that the scheme-theoretic complete intersection $\tau=D_{1} \cap \cdots \cap D_{m}$ has an irreducible component $Z=Z_{\text {red }}$ of dimension $n-m$ along which τ is reduced generically. Let $\nu: Y \rightarrow Z$ be the normalization of Z. Then there exists an effective Weil divisor Δ of Y such that
(1.3.1) $K_{Y}=\nu^{*}\left(K_{X}+D_{1}+\cdots+D_{m}\right)-\Delta$,
(1.3.2) $\operatorname{supp}\left(\nu_{*} \Delta\right)$ is the union of all the Weil divisors of Z whose supports are contained in either $\operatorname{Sing} Z$ or one of the irreducible components of τ other than Z.

The condition (1.3.2) implies that $\operatorname{supp} \Delta=\phi$ if and only if Z is smooth in codimension one and moreover Z intersect the irreducible components of τ other than Z along some subvarieties of at most ($n-m-2$) dimension.
§ 2. Proof of (0.5). (2.1) Lemma. Under the assumptions in (0.5), let D and D^{\prime} be distinct members of $|L|, \tau$ the scheme-theoretic complete intersection $D \cap D^{\prime}$. Then we have
(2.1.1) $\operatorname{Pic} X=Z L, K_{X} \simeq-5 L$,
(2.1.2) $H^{0}\left(\tau, O_{\tau}\right) \simeq C$,
(2.1.3) $\quad|L|_{\tau}=\left|L_{r}\right|$.
(2.2) Lemma. Let D and D^{\prime} be general members of $|L|$, and $\tau=$ $D \cap D^{\prime}$. Let $Z=Z_{\text {red }}$ be an irreducible component of τ along which τ is reduced generically. If $Z \not \subset \mathrm{Bs}|L|$, then $\tau \simeq Z \simeq P^{2}$ and $L_{\tau} \simeq O_{P^{2}}(1)$.

Proof. Let $\nu: Y \rightarrow Z$ be the normalization of $Z, f: S \rightarrow Y$ the minimal resolution of Y and let $g=\nu \cdot f$. Then there exist by (1.3) an effective Weil divisor Δ on Y, effective Cartier divisors E and G on S with no common components such that the canonical sheaves K_{Y} and K_{S} are given by

$$
K_{Y}=O_{Y}\left(-3 \nu^{*} L-\Delta\right), \quad K_{S}=O_{s}\left(-3 g^{*} L-E-G\right)
$$

with $f_{*}(E)=\Delta, f_{*}(G)=0$. Let $\Sigma:=f^{-1}(\Delta) \cup g^{-1}($ Sing $Z)$.
Since $h^{0}(X, L) \geq 3$ and $Z \not \subset \mathrm{Bs}|L|, g^{*} L$ is effective. By $P_{m}(S)=0, S \simeq \boldsymbol{P}^{2}$ or S is ruled. Assume that S is ruled. Let $\pi: S \rightarrow W$ be a morphism of S onto a curve W with general fiber $F \simeq \boldsymbol{P}^{1}$. Let $H \in g^{*}|L|$. We note that $E_{\text {red }}+G_{\text {red }} \subset H_{\text {red }}$ for general D and D^{\prime}. We also have,

$$
-2=K_{S} F+F^{2}=K_{S} F=-(3 H+E+G) F .
$$

It follows that $H F=0,(E+G) F=2$. However this contradicts $E_{\text {red }}+$ $G_{\text {red }} \subset H_{\text {red }}$. Therefore $S \simeq Y \simeq P^{2}$ and $G=0$. Since $H_{\text {red }} \geq E_{\text {red }}$ and $K_{s}=-$ $3 H-E$, we see that $O_{S}(H) \simeq O_{P^{2}}(1), E=0$. Since $E=0, Z$ has by (1.3) at worst isolated singularities.

There exists $D^{\prime \prime} \in|L|$ such that $g^{*}\left(Z \cap D^{\prime \prime}\right)=H$ by the choice of H. Let $l=D \cap D^{\prime} \cap D^{\prime \prime}$ be a scheme-theoretic complete intersection, and $C=g(H)_{\text {red }}$.

Since $g^{*} D^{\prime \prime}=H \simeq \boldsymbol{P}^{1}$ and g is an isomorphism on $S \backslash \Sigma$, we have $H \backslash \Sigma \simeq C \backslash$ $g(\Sigma)$, so that l is reduced generically along $C . \quad C$ is isomorphic to $Z \cap D^{\prime \prime}$ on $(Z \backslash g(\Sigma)) \cap D^{\prime \prime}$. Namely $I_{c}=\sqrt{I_{C}}=I_{l}$ along $C \cap(Z \backslash g(\Sigma))$. We have

$$
1=\left(H^{2}\right)_{S}=\left(g^{*}(L) H\right)_{S}=\left(L g_{*}(H)\right)_{X}=(L C)_{X}
$$

Therefore we can apply (1.2) to X, C and l to infer that C is a connected component of l and that $l \simeq C \simeq \boldsymbol{P}^{1}$ along C. If $\operatorname{Sing} \tau_{\text {red }}$ is nonempty, then Sing $\tau_{\text {red }} \subset \mathrm{Bs}|L|$. Hence $Z \cap \operatorname{Sing} \tau_{\text {red }} \subset Z \cap D^{\prime \prime}(\simeq C)$. Consequently $Z \cap$ Sing $\tau_{\text {red }} \subset C$. As C is a connected component of l, this shows that Z is a connected component of τ. In fact, if not, there is an irreducible component $Z^{\prime}(\neq Z)$ of τ meeting Z. Then we choose a point $p \in Z \cap Z^{\prime}$. We note that $Z \cap Z^{\prime}$ is finite by $E=0$. Hence since $p \in Z \cap \operatorname{Sing} \tau_{\text {red }} \subset C, Z^{\prime} \cap D^{\prime \prime}$ contains an irreducible component (a curve or a surface) of l meeting C. This contradicts that C is a connected component of l.

However $h^{0}\left(\tau, O_{\tau}\right)=1$ by (2.1). Hence $Z \simeq \tau_{\text {red }}$. As τ is Gorenstein and reduced generically along Z, τ is reduced everywhere and $\tau \simeq Z$. Since a prime Cartier divisor C of Z is smooth, so is Z along C. As $\operatorname{Sing} Z \subset Z \cap$ Sing $\tau_{\text {red }} \subset C$, it follows that Z is smooth everywhere. Thus we see $P^{2} \simeq S \simeq$ $Y \simeq Z \simeq \tau$.
Q.E.D.
(2.3) Completion of the proof of (0.5). Bertini's theorem guarantees existence of $\tau=D \cap D^{\prime}$ with a component Z of τ as in (2.2). By (2.1.3) and (2.2), $\mathrm{Bs}|L|_{\tau}=\mathrm{Bs}\left|L_{\tau}\right|=\mathrm{Bs}\left|O_{P_{2}}(1)\right|=\varnothing$. We have also $h^{0}(X, L)=h^{0}\left(\tau, L_{\tau}\right)+2=5$ and $\left(L^{4}\right)_{X}=\left(H^{2}\right)_{S}=1$. Consequently $X \simeq P^{4}$ by an easy argument. Q.E.D.

References

[1] F. Hirzebruch and K. Kodaira: On the complex projective spaces. J. Math. Pures Appl., 36, 201-216 (1957).
[2] J. Kollár: Flips, flops, minimal models etc. (1990) (preprint).
[3] I. Nakamura: Moishezon threefolds homeomorphic to P^{3}. J. Math. Soc. Japan, 39, 521-535 (1987).
[4] -: Threefolds homeomorphic to a hyperquadric in P^{4}. Algebraic Geometry and Commutative Algebra in Honor of M. Nagata, pp. 379-404 (1987).
[5] ——: On Moishezon manifolds homeomorphic to $\boldsymbol{P}_{\boldsymbol{C}}^{n}$ (1991) (preprint).
[6] T. Peternell: A rigidity theorem for $P_{3}(C)$. Manuscripta Math., 50, 397-428 (1985).
[7] -: Algebraic structures on certain 3-folds. Math. Ann., 274, 133-156 (1986).
[8] Y. T. Siu: Nondeformability of the complex projective space. J. reine angew. Math., 399, 208-219 (1989).
[9] H. Tsuji: Every deformation of P^{n} is again P^{n} (unpublished).
[10] S. T. Yau: On Calabi's conjecture and some new results in algebraic geometry. Proc. Nat. Acad. Sci. U.S.A., 74, 1798-1799 (1977).

