28. Universal R-matrices for Quantum Groups Associated to Simple Lie Superalgebras

By Hiroyuki YAMANE

Department of Mathematics, Osaka University

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1991)

Introduction. Let H be a Hopf algebra with coproduct $\Delta: H \to H \otimes H$. Let $\mathcal{R} = \sum_i a_i \otimes b_i \in H \otimes H$ be an invertible element. The triple (H, Δ, \mathcal{R}) is called a *quasi-triangular Hopf algebra* if \mathcal{R} satisfies the following properties (see [1]):

(0.1)
$$\overline{\mathcal{A}}(x) = \mathcal{R}\mathcal{A}(x)\mathcal{R}^{-1} \qquad (x \in H), \\ (\mathcal{A} \otimes id)(\mathcal{R}) = \mathcal{R}_{13}\mathcal{R}_{23}, \qquad (id \otimes \mathcal{A})(\mathcal{R}) = \mathcal{R}_{13}\mathcal{R}_{12}$$

where $\Delta = \tau \circ \Delta$, $\tau(x \otimes y) = y \otimes x$ and $\Re_{12} = \sum_i a_i \otimes b_i \otimes 1$, $\Re_{13} = \sum_i a_i \otimes 1 \otimes b_i$, $\Re_{23} = \sum_i 1 \otimes a_i \otimes b_i$. The \Re is called the *universal R-matrix*. From this definition, it follows that \Re satisfies the Yang-Baxter equation:

Let \mathcal{G} be a complex simple Lie algebra and $U(\mathcal{G})$ the universal enveloping algebra of \mathcal{G} . In 1985, Drinfeld [1] and Jimbo [2] associated to each \mathcal{G} , the *h*-adic topologically free C[[h]]-Hopf algebra $(U_h(\mathcal{G}), \mathcal{A})$ such that $U_h(\mathcal{G})/hU_h(\mathcal{G}) = U(\mathcal{G})$, which is now called the quantum group or the quantized enveloping algebra. Moreover Drinfeld [1] gave a method of constructing an element $\mathcal{R} = U_h(\mathcal{G}) \otimes U_h(\mathcal{G})$ such that $(U_h(\mathcal{G}), \mathcal{A}, \mathcal{R})$ is a quasitriangular Hopf algebra. His method is called the quantum double construction. By using this method, Rosso [9] gave an explicit formula of \mathcal{R} for $\mathcal{G} = sl_n(\mathcal{C})$, and Kirillov-Reshetikhin [6], Levendorskii-Soibelman [8] gave such a formula for any \mathcal{G} .

Let $\tilde{\mathcal{Q}} = \tilde{\mathcal{Q}}_0 \oplus \tilde{\mathcal{Q}}_1$ be a complex simple Lie superalgebra of types A - G and $U(\tilde{\mathcal{Q}})$ the universal enveloping superalgebra of $\tilde{\mathcal{Q}}$. In this note, we associate to each $\tilde{\mathcal{Q}}$, an *h*-adic topological C[[h]]-Hopf superalgebra $(U_h(\tilde{\mathcal{Q}}), \Delta^s)$ such that $U_h(\tilde{\mathcal{Q}})/hU_h(\tilde{\mathcal{Q}}) = U(\tilde{\mathcal{Q}})$. In fact, the definition of $U_h(\tilde{\mathcal{Q}})$ depends on a choice of the Cartan matrix and the parities of the simple roots of $\tilde{\mathcal{Q}}$. (For the terminologies *Lie superalgebra* and *Hopf superalgebra*, see [4, 6].) We also introduce an *h*-adic topological Hopf algebra $(U_h^s(\tilde{\mathcal{Q}}), \Delta^s)$. The $U_h^s(\tilde{\mathcal{Q}})$ contains $U_h(\tilde{\mathcal{Q}})$ as a subalgebra and the Hopf algebra structure of $(U_h^s(\tilde{\mathcal{Q}}), \Delta^s)$. In this note, by using the quantum double construction, we construct an element $\mathfrak{R} \in U_h^s(\tilde{\mathcal{Q}}) \otimes U_h^s(\tilde{\mathcal{Q}})$ explicitly so that $(U_h^s(\tilde{\mathcal{Q}}), \Delta^s, \mathfrak{R})$ is a quasi-triangular Hopf algebra. In the process of constructing \mathfrak{R} , we can also show that $U_h^s(\tilde{\mathcal{Q}})$ are topologically free.

Details omitted here will be published elsewhere.

After I finished this work, Professor E. Date informed me about the

§1. Preliminaries. Let $\tilde{\mathcal{Q}} = \tilde{\mathcal{Q}}_0 \oplus \tilde{\mathcal{Q}}_1$ be a simple Lie superalgebra of types A - G and $U(\tilde{\mathcal{Q}}) = U(\tilde{\mathcal{Q}})_0 \oplus U(\tilde{\mathcal{Q}})_1$ the universal enveloping superalgebra of $\tilde{\mathcal{Q}}$. Let $\Pi = \{\alpha_1, \dots, \alpha_n\}$ be the set of simple roots and $p: \Pi \rightarrow \{0, 1\}$ the parity function. Let A be a Cartan matrix related to Π . We assume that A is of distinguished type when $\tilde{\mathcal{Q}} \neq sl(n \mid m)$ or $osp(n \mid m)$. In this note, we define, for such A an h-adic topologically free C[[h]]-Hopf superalgebra $(U_h(\tilde{\mathcal{Q}}) = U_h(\tilde{\mathcal{Q}}, A, p) = U_h(\tilde{\mathcal{Q}})_0 \oplus U_h(\tilde{\mathcal{Q}})_1, \Delta^s)$ such that $U_h(\tilde{\mathcal{Q}})/hU_h(\tilde{\mathcal{Q}}) = U(\tilde{\mathcal{Q}})$. (The Hopf superalgebra $U_h(\tilde{\mathcal{Q}})$ corresponding to $osp(2 \mid 1)$ has already been introduced by Kulish and Reshetikhin [7].) Let $Z/2Z = \langle \sigma \rangle$ act on $U_h(\tilde{\mathcal{Q}})$ by $\sigma \cdot x = (-1)^i x$ for $x \in U_h(\tilde{\mathcal{Q}})_i$. Define an h-adic C[[h]]-Hopf algebra as follows:

(i) $U_{\hbar}^{\sigma}(\tilde{\mathcal{Q}}) = U_{\hbar}(\tilde{\mathcal{Q}}) \otimes C[[\hbar]] \langle \sigma \rangle$ as h-adic $C[[\hbar]]$ -modules. We denote the element $x \otimes \sigma^{c}$ ($x \in U_{\hbar}(\tilde{\mathcal{Q}}), c \in \mathbb{Z}$) of $U_{\hbar}^{\sigma}(\tilde{\mathcal{Q}})$ by $x\sigma^{\sigma}$.

(ii) The product of $U_h(\tilde{\mathcal{G}})$ is defined by $x\sigma^c \cdot x'\sigma^{c'} = (-1)^{ic}xx'\sigma^{c+c'}$ for $x \in U_h(\tilde{\mathcal{G}})$ and $x' \in U_h(\tilde{\mathcal{G}})_i$.

(iii) The coproduct Δ^{σ} is defined by putting $\Delta^{\sigma}(x\sigma^{c}) = \sum a_{i}\sigma^{p_{i}+c}\otimes b_{i}\sigma^{c}$ for $x \in U_{h}(\tilde{\mathcal{G}}), \ \Delta^{s}(x) = \sum a_{i}\otimes b_{i}$ and $b_{i} \in U_{h}(\tilde{\mathcal{G}})_{p_{i}}$. (The Hopf algebra $U_{h}^{\sigma}(\tilde{\mathcal{G}})$ corresponding to sl(1|1) has already been introduced by Jing, Ge and Wu [3].)

§2. Dynkin diagrams. Let A be a Cartan matrix of rank n satisfying the condition of §1. Let (Φ, Π) $(\Pi = (\alpha_1, \dots, \alpha_n)$ be the root system of A where Φ and Π denote the set of roots and the set of simple roots. Put N=n+1 if A is of type A, and N=n otherwise. We assume that (Φ, Π) is embedded in an N-dimensional complex linear space S with a non-degenerate symmetric bilinear form (,). Let $D = \text{diag}(d_1, \dots, d_n)$ be the diagonal matrix described below. They satisfy $DA = [(\alpha_i, \alpha_j)]$.

(i) Types A, B, C, D. Let $\{\bar{e}_i | 1 \le i \le N\}$ be a basis of S such that $(\bar{e}_i, \bar{e}_j) = \pm 1$. We can arbitrarily choose the sign of (\bar{e}_i, \bar{e}_i) . In the diagram below, the element under the *i*-th vertex denotes the simple root α_i .

(A) $\begin{array}{c} 1 & 2 & N-1 \\ \times & \longrightarrow & \times \\ \bar{\varepsilon}_1 - \bar{\varepsilon}_2 & \bar{\varepsilon}_2 - \bar{\varepsilon}_3 & \bar{\varepsilon}_{N-1} - \bar{\varepsilon}_N \end{array}$ $D = \operatorname{diag}(1, \dots, 1).$

(B)
$$\begin{array}{c} 1 & 2 \\ \times & \times \\ \bar{\varepsilon}_1 - \bar{\varepsilon}_2 & \bar{\varepsilon}_2 - \bar{\varepsilon}_3 \end{array}$$

 $\begin{array}{cccc} N-1 & N & \text{or} & \frac{1}{\tilde{\varepsilon}_{N-1}-\tilde{\varepsilon}_N} & \tilde{\varepsilon}_N & \text{or} & \frac{1}{\tilde{\varepsilon}_1-\tilde{\varepsilon}_2} & \frac{2}{\tilde{\varepsilon}_2-\tilde{\varepsilon}_3} & \cdots & \frac{N-1}{\tilde{\varepsilon}_{N-1}-\tilde{\varepsilon}_N} & \overset{N}{\tilde{\varepsilon}_N} \\ D = \text{diag} (1, \cdots, 1, \frac{1}{2}). \end{array}$

(C)
$$\begin{array}{c} 1 \\ \times \\ - \\ \epsilon_1 \\ - \\ \epsilon_2 \\ \epsilon_2 \\ - \\ \epsilon_3 \\ - \\ \epsilon_3 \\ - \\ \epsilon_{N-1} \\ - \\ \epsilon_N \\ 2 \\ \epsilon_N \end{array} = D = diag (1, \dots, 1, 2).$$

(D)
$$\begin{array}{c} N-1 \\ \times \underbrace{ \begin{array}{c} N-2 \\ \bar{\varepsilon}_1 - \bar{\varepsilon}_2 & \bar{\varepsilon}_2 - \bar{\varepsilon}_3 \end{array}}_{\bar{\varepsilon}_1 - \bar{\varepsilon}_{N-1} - \bar{\varepsilon}_{N-1} - \bar{\varepsilon}_{N-1} - \bar{\varepsilon}_N} \\ \end{array} }_{\bar{\varepsilon}_1 - \bar{\varepsilon}_2 & \bar{\varepsilon}_2 - \bar{\varepsilon}_3 & \bar{\varepsilon}_{N-2} - \bar{\varepsilon}_{N-1} - \bar{\varepsilon}_{N-1} + \bar{\varepsilon}_N \end{array} \quad \text{if} \quad (\bar{\varepsilon}_{N-1}, \bar{\varepsilon}_{N-1}) = (\bar{\varepsilon}_N, \bar{\varepsilon}_N),$$

H. YAMANE

$$egin{aligned} & N-1 \ & N-2 & N-2 \ ar{arepsilon_1} & ar{arepsilon_2} & ar{arepsilon_1} & ar{arepsilon_1} & ar{arepsilon_1} & ar{arepsilon_1} & ar{arepsilon_{N-1}} & ar{arepsilon_$$

(ii) Types F_4 and G_3 . For type F_4 (resp. G_3), we normalize (,) by $(\alpha_3, \alpha_3) = 2$ (resp. $(\alpha_3, \alpha_3) = -2$).

 $1 \qquad 4 \qquad 3 \qquad 2 \\ \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigotimes, \qquad D = \operatorname{diag}(2, 1, 1, 2).$ 1 4 (\mathbf{F}_4) 2 1 3 D = diag(1, 3, 1). (\mathbf{G}_3) ⊗----0<===0,

We define the parity function $p: \Pi \rightarrow \{0, 1\}$ as follows. If the *i*-th vertex is \bigcirc , \otimes or \times , then we put $p(\alpha_i) = 0$, 1 or $(2 - |(\alpha_i, \alpha_i)|)/2$ respectively. If the *N*-th vertex of type B is \bullet , then we put $p(\bar{\varepsilon}_N)=1$.

Remark. In this note, we do not treat the Cartan matrix A of type $D(2, 1; \alpha).$

§3. Definition of $U_h(\tilde{\mathcal{G}})$. Let $((\Phi, \Pi), S)$ $p: \Pi \to \{0, 1\}$ and A = $(a_{ij})_{1 \le i,j \le n}$ be the root system, the parity function and the Cartan matrix given in §2. Let $\mathcal{H} = S^*$ and identify the elements $H_{\alpha} \in \mathcal{H}$ and $\alpha \in S$ by $\gamma(H_a) = (\gamma, \alpha) \ (\gamma \in S).$ Put $[X, Y]_v = XY - (-1)^{p(X)p(Y)}vYX$ and $[X, Y] = [X, Y]_1$ where p(X) and p(Y) are the parities of X and Y. Set

$$\begin{bmatrix} m+n \\ n \end{bmatrix}_{t} = \prod_{i=0}^{n-1} \left((t^{m+n-i} - t^{-m-n+i}) / (t^{i+1} - t^{-i-1}) \right) \in \boldsymbol{C}[t].$$

Put $q = e^{h/2}$ and $v_i = q^{(\tilde{\epsilon}_i, \tilde{\epsilon}_i)}$.

Let $U_h(\tilde{\mathcal{G}}) = U_h(\tilde{\mathcal{G}}, A, p)$ be the *h*-adic topological C[[h]]-superalgebra generated by the C-linear space \mathcal{H} and the elements E_i, F_i $(1 \le i \le n)$ with the parities p(H)=0 ($H \in \mathcal{H}$) and $p(E_i)=p(F_i)=p(\alpha_i)$ ($1 \le i \le n$) and defined by the following relations (3.1)–(3.5).

 $(3.1) \quad [H, H'] = 0$ for $H, H' \in \mathcal{H}$,

$$(3.2) \quad [H, E_i] = \alpha_i(H)E_i, \ [H, F_i] = -\alpha_i(H)F_i \qquad \text{for } H \in \mathcal{H} \text{ and } 1 \le i \le n,$$

- (3.3) $[E_i, F_j] = \delta_{ij} sh(hH_{a_i}/2)/sh(hd_i/2)$ for $1 \le i, j \le n$,
- (3.4) (i) $[E_i, E_j] = 0$ for $1 \le i, j \le n$ such that $a_{ij} = 0$,
 - (ii) $\sum_{\nu=0}^{1+|a_{ij}|} (-1)^{\nu} \left[\frac{1+|a_{ij}|}{\nu} \right]_{a^{a_i}} E_i^{1+|a_{ij}|-\nu} E_j E_i = 0$ for $1 \le i \ne j \le n$ and $p(\alpha_i) = 0$.

(iii) $\begin{array}{ccc} [[E_i, E_j]_{v_j}, E_k]_{v_{j+1}}, E_j] = 0 & \text{for } \times & \underbrace{j & k}{\otimes} & \underbrace{k} & (i < j < k), \\ & \underbrace{i & j & k}{\otimes} & \underbrace{or} & \underbrace{i & j}{\otimes} & \underbrace{k} & \underbrace{k} & (i < j < k), \\ (iv) & \underbrace{i & k}{\otimes} & \underbrace{i & j}{\otimes} & \underbrace{k} & \underbrace{k$

- (iv) if A is of type B, $[[[E_{N-1}, E_N]_{v_N}, E_N], E_N]_{v_{\overline{N}}} = 0$,
- (v) if A is of type D, $[[E_{N-2}, E_{N-1}]_{v_{N-1}}, E_N]_{v_N} = [[E_{N-2}, E_N]_{v_{N-1}}, E_{N-1}]_{v_N}$
- (vi) if A is of type C, then $[E_{i_{N-2}+i_{N-1}}, E_N] = 0$, (resp. $[E_{2i_{N-2}}, E_{N-1}] = 0$

or
$$[E_{i_{N-3}+i_{N-2}}, E_{N-1}]=0$$
 for $\times -\infty \otimes \otimes \otimes \otimes$

in the following section.

(3.5) the relations (3.4) with E_i 's replaced by F_i 's.

A Hopf superalgebraic structure of $U_n(\tilde{\mathcal{G}})$ is given by a coproduct Δ^s defined by

$$egin{aligned} & \Delta^s(H) \!=\! H \!\otimes\! 1 \!+\! 1 \!\otimes\! H & ext{for } H \in \mathcal{H}, \ & \Delta^s(E_i) \!=\! E_i \!\otimes\! 1 \!+\! \exp\left(rac{h}{2} H_{a_i}
ight) \!\otimes\! E_i & ext{for } 1 \!\leq\! i \!\leq\! n, \ & \Delta^s(F_i) \!=\! F_i \!\otimes\! \exp\left(-rac{h}{2} H_{a_i}
ight) \!+\! 1 \!\otimes\! F_i & ext{for } 1 \!\leq\! i \!\leq\! n. \end{aligned}$$

Lemma 3.1. Put $C = \{H \in \mathcal{H} | \alpha_i(H) = 0 \ (1 \le i \le n)\}$ and $U_h(\tilde{\mathcal{G}})' = U_h(\hat{\mathcal{G}})/\overline{U_h(\tilde{\mathcal{G}})C}$. As a C-Hopf superalgebra, $U_h(\tilde{\mathcal{G}})'/hU_h(\tilde{\mathcal{G}})'$ is isomorphic to $U(\tilde{\mathcal{G}})$.

By using the quantum double construction and Tanisaki's argument in [10] for $U_{h}^{\mathfrak{a}}(\tilde{\mathcal{G}})$, we can show the following theorem:

Theorem 3.2. $U_h(\tilde{\mathcal{G}})$ is topologically free as an h-adic C[[h]]-module.

§ 4. Root vectors of $U_{\hbar}(\tilde{\mathcal{G}})^+$ and $U_{\hbar}(\tilde{\mathcal{G}})^-$. Let Φ_+ be the set of positive roots related to Π and let $\Phi'_+ = \{\beta \in \Phi_+ \mid \beta/2 \notin \Phi\}$. For $\beta = c_1\alpha_1 + \cdots + c_n\alpha_n \in \Phi'_+$, we put $l(\beta) = c_1 + \cdots + c_n$, $c_i^{\beta} = c_i$ $(1 \le i \le n)$, $g(\beta) = \min\{i \mid c_i \ne 0\}$ and $l'(\beta) = c_{g(\beta)}^{-1}l(\beta) \in \frac{1}{2}Z$. We define a total order on Φ'_+ as follows. If $\alpha, \beta \in \Phi'_+$, we say that $\alpha \le \beta$ if $g(\alpha) \le g(\beta)$, $l'(\alpha) \le l'(\beta)$, $c_{n-1}^{\alpha} \le c_{n-1}^{\beta}$ and $c_n^{\alpha} \le c_n^{\beta}$. Let $U_{\hbar}(\tilde{\mathcal{G}})^+$ (resp. $U_{\hbar}(\tilde{\mathcal{G}})^-$) be the unital subalgebra of $U_{\hbar}(\tilde{\mathcal{G}})$ generated by E_i 's (resp. F_i 's).

Definition 4.1. For $\beta \in \Phi'_+$, we define the elements $E_{\beta} \in U_{\hbar}(\tilde{\mathcal{G}})^+$ and $F_{\beta} \in U_{\hbar}(\tilde{\mathcal{G}})^-$ as follows. For type F_4 (resp. G_3), E_{abcd} and E'_{abcd} (resp. E_{abcd} and E'_{abcd} (resp. E_{abcd} and E'_{abcd}) denote $E_{aa_1+ba_4+ca_3+da_2}$ and $E'_{aa_1+ba_4+ca_3+da_2}$ (resp. $E_{aa_1+ba_3+ca_2}$).

(i) We put $E_{\alpha_i} = E_i$ $(1 \le i \le n)$.

(ii) For $\alpha \in \Phi'_{+}$ such that $g(\alpha) < i$ and $\alpha + \alpha_{i} \in \Phi$, we put $E'_{\alpha+\alpha_{i}} = [E_{\alpha}, E_{\alpha_{i}}]_{q^{-(\alpha,\alpha_{i})}}$. If A is of type B, i = N and $\alpha = \bar{\epsilon}_{j}$ $(1 \le j \le N-1)$, let $E_{\alpha+\alpha_{N}} = (q^{1/2} + q^{-1/2})^{-1}E'_{\alpha+\alpha_{N}}$. If A is of type D, i = N and $\alpha = \alpha_{N-1}$, let $E_{\alpha+\alpha_{N}} = (q+q^{-1})^{-1}E'_{\alpha+\alpha_{N}}$. If A is of type F₄, let $E_{1120} = (q+q^{-1})^{-1}E'_{1120}$ and $E_{1232} = (q^{2}+1+q^{-2})^{-1}E'_{1232}$. If A is of type G₃, let $E_{121} = (q+q^{-1})^{-1}E'_{121}$ and $E_{031} = (q^{2}+1+q^{-2})^{-1}E'_{031}$. Otherwise, put $E_{\alpha} = E'_{\alpha}$.

(iii) For α , $\beta \in \Phi'_+$ such that $g(\alpha) = g(\beta)$, $\alpha < \beta$, $l'(\beta) - l'(\alpha) \le 1$ and $\alpha + \beta \in \Phi'_+$, we put $E'_{\alpha+\beta} = [E_{\alpha}, E_{\beta}]_{q^{-(\alpha,\beta)}}$. If A is of type C (resp. D, F₄ of G₃), then $E_{\alpha+\beta}$ is defined by $(q+q^{-1})^{-1}E'_{\alpha+\beta}$ (resp. $(q+q^{-1})^{-1}E'_{\alpha+\beta}$, $(q^2+q^{-2})^{-1}E'_{\alpha+\beta}$ or $(q^2+1+q^{-2})^{-1}E'_{\alpha+\beta}$).

(iv) $F_{\alpha} \in U_{\hbar}(\tilde{\mathcal{G}})^{-}$ ($\alpha \in \Phi'_{+}$) is also defined in the same manner.

§ 5. The main result. For $\alpha \in \Phi'_+$, we define an integer d_{α} as follows. If $(\alpha, \alpha) = 0$, we put $d_{\alpha} = 1$. If A is of type G₃ and $\alpha = \alpha_1 + 2\alpha_3 + \alpha_2$, we put $d_{\alpha} = 2$. Otherwise, put $d_{\alpha} = |(\alpha, \alpha)|/2$.

No. 4]

Definition 5.1. Assume that A is of type A, B, C or D. For $\alpha = c_1 \alpha_1$ $+\cdots+c_n\alpha_n\in\Phi'_+$, let $p_{\alpha}=\sum_{p(i)=1}^n c_i$ where p(i) denotes $p(\alpha_i)$. For $\alpha=\tilde{\epsilon}_i+n_j\tilde{\epsilon}_j$ $\in \Phi'_+$ ($1 \le i \le j \le N$, $-1 \le n_j \le 1$), put $V_{\alpha} = (\prod_{i < l \le N} (\bar{\epsilon}_l, \bar{\epsilon}_l) v_l) (\prod_{j < u \le N} (\bar{\epsilon}_u, \bar{\epsilon}_u) v_u)^{n_j}$. For $\alpha \in \Phi'_+$, we define the element $X_{\alpha} \in C[[h]]^{\times}$ as follows. For A of type B (resp. C or D) and $\alpha = \bar{\epsilon}_i + \bar{\epsilon}_j$ ($1 \le i \le N$), we put $X_{\alpha} = (-1)^{p(N)}(\bar{\epsilon}_N, \bar{\epsilon}_N)$ (resp. v_N or $(\bar{\varepsilon}_{N+1}, \bar{\varepsilon}_{N+1})v_{N+1}^{-1})$. For A of type D and $\alpha = 2\bar{\varepsilon}_i$ $(1 \le i \le N, p(\bar{\varepsilon}_i - \bar{\varepsilon}_N) = 1)$, we put $X_{\alpha} = (\bar{\varepsilon}_{N+1}, \bar{\varepsilon}_{N+1})$. Otherwise, put $X_{\alpha} = 1$. We let $M_{\alpha} = (-1)^{\{p_{\alpha}(p_{\alpha}-1)/2\}}$. $X_{\alpha} \cdot V_{\alpha}$.

Remark. In Definition 5.1, we assumed, for simplicity, A is of type A, B, C or D. M_{α} can also be defined in the F₄- and G₃-cases so that Theorem 5.2 below is also true in those cases. In all cases, $M_{a} = (-1)^{a} q^{b}$ for some integers a and b.

Let $U_h^{\sigma}(\hat{\mathcal{G}})$ be the *h*-adic C[[h]]-Hopf algebra defined in §1. For this $U_{h}^{s}(\mathcal{G})$, we construct the universal *R*-matrix by using the quantum double construction. Let $\Phi_n(t) = \prod_{i=1}^n ((1-t^i)/(1-t))$ and let $e(u; t) = \sum_n (u^n/\Phi_n(t))$ be the formal power series called the q-exponential. We note that $E_{\alpha}^2 = 0$ if $(\alpha, \alpha) = 0.$

Theorem 5.2. Let
$$\mathscr{R}$$
 be an element of $U_h^{\sigma}(\bar{\mathscr{Q}}) \otimes U_h^{\sigma}(\bar{\mathscr{Q}})$ defined by
 $\mathscr{R} = \{ \prod_{\alpha \in \mathscr{O}'_+} e((q^{d_{\alpha}} - q^{-d_{\alpha}})M_{\alpha}^{-1}E_{\alpha} \otimes F_{\alpha}\sigma^{p(\alpha)}; (-1)^{p(\alpha)}q^{(\alpha,\alpha)}) \}$
 $\times \{ \frac{1}{2} \sum_{c,c' \in \{0,1\}} (-1)^{cc'}\sigma^c \otimes \sigma^{c'} \} \cdot \exp\left(\frac{h}{2}t_0\right)$

where $t_0 = \sum_{i=1}^{N} H_i \otimes H_i$ and H_i 's are basis elements of \mathcal{H} such that (H_i, H_j) $=\delta_{ij}$. (The product over α is taken with respect to the total order < defined in §4.) Then $(U_h^{\mathfrak{a}}(\mathcal{G}), \Delta^{\mathfrak{a}}, \mathcal{R})$ is a quasi-triangular Hopf algebra.

Acknowledgements. I would like to express my heartfelt thanks to Professor M. Noumi, Professor T. Tanisaki, Professor J. Murakami and Professor M. Okado for valuable communication. Especially I thank Professor T. Tanisaki for showing me a proof of the result on the "quantum double construction" given in [1]. I also thank Professor M. Rosso for sending me his preprint of [9] and Professor E. Date for informing me about the existence of the preprint [5] of Khoroshkin and Tolstoy.

References

- V. G. Drinfeld: Quantum groups. Proc. Int. Congr. Math., Berkeley, vol. 1 (1986); Amer. Math. Soc., pp. 798-820 (1988).
 M. Jimbo: A q-difference analogue of U(G) and the Yang-Baxter equation. Lett. Math. Phys., 10, 63-69 (1985).
 N. Jing, M. Ge and Y. Wu: New quantum group associated with a "non-standard" burger and the proventies of the proventies o
- braid group representation (preprint).
 [4] V. G. Kac: Lie superalgebras. Adv. Math., 26, 8-96 (1977).
 [5] S. M. Khoroshkin and V. N. Tolstoy: Universal *R*-matrix for quantized super-

- [5] S. M. Khoroshkin and V. R. Folscoy. Conversal to match the function of groups (proprint).
 [6] A. N. Kirillov and N. Yu. Reshetikhin: q-Weyl group and a multiplicative formula for universal *R*-matrix. Commun. Math. Phys., 134, 421-431 (1990).
 [7] P. P. Kulish and N. Yu. Reshetikhin: Universal *R*-matrix of the quantum superalgebra osp(2|1). Lett. Math. Phys., 18, 143-149 (1989).
 [8] S. Levendorskii and Ya. Soibelman: Some applications of quantum Weyl group (constraint).
- (preprint). M. Rosso: An analogue of P.B.W. theorem and the universary *R*-matrix for $U_h sl(N+1)$. Commun. Math. Phys., 124, 307-318 (1989). T. Tanisaki: Harish-Chandra isomorphism for quantum algebras. ibid., 127, 555-[9]
- [10] 571 (1990).