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27. Fermat Motives and the Artin-Tate Formula. 1

By Noriyuki SuwaA
Department of Mathematics, Tokyo Denki University

(Communicated by Shokichi IYANAGA, M. J. A, April 12, 1991)

In this note, we mention some results on the Artin-Tate formula for
Fermat motives in the higher dimensional cases, which was achieved by [4]
and [10] in the 2-dimensional case. Detailed account will be published
elsewhere.

1. Definition of Fermat motives (Shioda [4]). 1.1. Let k be a field
and let X be the Fermat variety of dimension » and of degree m over k:

X: Tr4Tr4. .. 4+Tr , =0C P,
We assume that (m, p)=1 if k is of characteristic p>0. Let p, denote the
group of m-th root of unity in k. The group G=(g,)"**/(diagonal) acts
naturally on X;=X®,k. The character group G of G is identified with the
set ,

n+1
{a=(ao, Qyy * v vy an+1); a; € Z/m, Z(:JG%:O};
=

Let (Z/m)* act on G by ta=(tay, - - -, ta,.,) € G for any ae G and t € (Z/m)*.
Let ¢, be a fixed primitive m-th root of unity in Q. For the (Z/m)*-
orbit A of a=(a,, - -, an“) e G, define

Pa=-——rr Z Troeg)elal9)” ’)geZ[ ][G]
m gE€G
Here d=gcd(m, ay, - - -, @,,,). Then p, are idempotents, i.e.
p, if A=B
Dy Dp= , > pu=1
0 if A=B 4€0@®

where O(G) denotes the set of (Z /m)*-orbits in G. The pair M,=(X, p,)
defines a motive over k, called the Fermat submotive of X corresponding to
A (Shioda [4], p. 125).
1.2. Define a subset % of G by
U={a=(y, -+, @p.1) € G; a,#0 for all i}.
For each ac ¥, let

lal=3; ()1
=1

where {x) stands for the fractional part of e Q/Z.

1.3. Let R be a ring, in which m is invertible, and let F be a contra-
variant functor from a category of varieties over & to the category of R-
modules. For a Fermat submotive M ,=(X, p,) of X, define

FM,)=Im[p}: F(X)-»F(X)].

Example 1.4. Let [ be prime number different from the characteristic

of k. 'The l-adic étale cohomology groups H'(X, Q,(%)), i € Z; moreover, if [
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is prime to m, H'(X, Z|/'(1)), H' (X, Z,(i)), H' (X, Q.| Z,(?)), ie Z.

Example 1.5. The de Rham cohomology groups Hyn(X/k), or the
Hodge spectral sequence E¢/=H'(X, Q,)=>HSH(X k).

For the examples below, assume that % is perfect of characteristic
p>0.

Example 1.6. The crystalline cohomology groups H(X /W ,), H'(X /W),
H' (X /W)y, or the slope spectral sequences E¥/=H/(X, W Q=>H (X /W),
and EY =H/(X, WQi)=>H (X /W) (cf. [1], Ch. II).

Example 1.7. The logarithmic Hodge-Witt cohomology groups

HX,Z|p@)=H "X, W,2% ., HX,Z,0)=limH (X, Z/p(})) and

H(X,Q,/Z,0)=limH X, Z[p'®), ieN (cf.[2], Ch.IV.3,[9], Ch.I).

2. Fermat motives in characteristic p>0 ([10]). Throughout the sec-
tion, X denotes the Fermat variety of dimension # and of degree m over
k=F,.

2.1. Let M, be a Fermat submotive of X. We call the slopes and the
Newton polygon of the F-crystal (H*(M, /W), F) (cf. [3]) the slopes and the
Newton polygon of M ,, respectively.

Definition 2.2. Let M, be the Fermat submotive of X, corresponding
to a (Z /m)*-orbit AC.

(a) M, is said to be ordinary if the Newton polygon and the Hodge
polygon of M, coincide.

(b) M, is said to be supersingular if the Newton polygon has the
pure slope n /2.

(¢) M, is said to be of Hodge-Witt type if H/(M,, WQ") is of finite
type over W for all pairs (i, ) with i+j=n (cf. [2], Ch. IV, 4.6).

Proposition 2.3 ([10], Ch. II, 8). Let M, be the Fermat submotive of
X, corresponding to a (Z/m)*-orbit ACH, and let f be the order of p in
(Z|m)*.

(o) M, is ordinary & ||pa|=|a| for each ac A with |a|=1i, 0<i<
(n—=1)/2.

(b) M, is of Hodge-Witt type & ||p'al|—|a|=0, |p’al|—|al|=0,1 or
|p’all—||a|=0, —1 for each ac A with ||a||=1, 0<i<n/2—1 and for each j,
0<g<f.

(e) M, is supersingular & > 2t || plal|=nf |2 for each ac A with | al
=1, 0<i<(n—1)/2.

Corollary 2.4. The following conditions are all equivalent.

(i) M, is ordinary and supersingular.

(ii) M, is of Hodge-Witt type and supersingular.

(iii) |lall=n/2 for each ac A.

Remark 2.5. If X is defined over C, (iii) & HM, C) is purely of
type (n/2,n[2).

3. Supersingular Fermat motives. Throughout the section, k=F, of
characteristic p>0, I'=Gal(k/k) and X denotes the Fermat variety of
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dimension n=2r and of degree m over k.
3.1. Let ¢ denote the geometric Frobenius of X relative to k=F,.
Put
P,(T)=detQ —0*T|H"(M .z Q))=det(Q1 —O*T | H"(M ,/W)y).
Then the decomposition X=@, M, defines a factorization
det(1 —@*T|H*(X;, Q))=detA —O*T|H*(X /W) ) =] PAD).
A

Assume now that k=F, contains all the m-th roots of unity. Then we
have
P(T)= le'[A 1—j@1)

for each (Z/m)*-orbit AC¥ (cf. Weil [8]). Here j(a) denotes the Jacobi
sum defined by

@) =(—1" T A" - - Xw,,)+,
where the summation is taken over all the (n+41)-tuples (v, - -+, v,,1) €
(B)"*' subject to the relation v,+ - -4+v,,,=—1:a=(apa,, - - -, @,,,) and
X: k*—@Q* is a multiplicative character of order m.

3.2. Let CH"(X) and CH"(X;) denote the Chow group of rational
equivalence classes of algebraic cycles of codimension » on X and Xj;, re-
spectively. Recall that there is defined a cycle map CH"(X)—H"(Xz, Z,(1))
for each prime I. The Tate conjecture ([6]) asserts that H*(X;, @Q,(r)" is
spanned by the image of the composite CH"(X)—CH"(X)—H"(X;, Q.(1)).

Note that it follows from Tate’s theorem [7] together with the induc-
tive structure of Fermat varieties [5] that the action of @* on H*(X;, Q) is
semi-simple.

Let N7(X;) denote the group of numerical equivalence classes of alge-
braic cycles on X; of codimension . Then N7(X) is a free Z-module of
finite rank and equipped with a non-degenerate symmetric bilinear form
induced by the intersection pairing. The decomposition X=® , M, defines
decompostion :

crX®,2| L ]|-ecrw)e.z | ;@ |

CH'(X)®,Z [%] —® CH'(M,,)®,2 [%] and
N'Xp®,Z [%] —ON' (M, DS, Z [%]

Theorem 3.3. Let X be the Fermat variety of dimension n=2r and
of degree m over k, M, the Fermat submotive of X, corresponding to a
(Z /m)<-orbit ACU and P,(T)=1],A—aT). Then we have implications

[(HeWel<liDedine vl

among the following assertions. If the Tate conjecture holds true for X,
these are all equivalent.

(i) M, is supersingular.

(ii) There is a prime l==p such that the cycle map CH™(M ,z) ®; Q,—
H™(M , z Q.(1)) is surjective.
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(iii) For all primesl=+p, the cycle map CH (M , ;) ®,Q,—~H"(M , 5, Q.(1)
is surjective.
(iv) N'(M,)®zZ[1/m]+0.
(v) a/q"is a root of unity for any a.
(vi) «/q" is a root of unity for some a.
Corollary 3.4. If M, is not supersingular, the cycle map CH (M , )
®zQ—H"(M 4.z Q,(1)) is zero.
Corollary 3.5. Assume that m is prime. Then B,(X)—rkN"(X;) is
divisivle by m—1.
Corollary 3.6. We have
rEN"(Xp)<1+4#A,
where the summation is taken over all the (Z/m)*-orbit ACU such that
M, is supersingular. If the Tate conjecture holds true for X we have the
equality
rkEN'(Xp)=1+4A.
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