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We construct the explicit flat holomorphic conformal structure on an
orbifold. We often abbreviate ’Horrocks-Mumford’ to ’HM’, and ’holomor-
phic conformal structure’ to ’HCS’. P(C) denotes the n-dimensional com-
plex projective space.

In the paper [2], Horrocks and Mumford constructed a holomorphic
vector bundle of rank two on the P(C). The spaceF of its sec-
tions is four-dimensional. If the zero set X, of a section s e F, is a
smooth surface, X, is an abelian surface with (1.5)-polarization. In fact,
they proved that P(C)=P(Fn)is birationally equivalent to the moduli
space , of the abelian surfaces with (1,5)-polarization and level-5-
structure. (See [2] [4].) We call this projective space the HM-orbifold.

While the moduli space , is realized as a quotient space /F, of
the Siegel upper space of degree two. Here F, is a certain discrete
subgroup of Sp(4, R). (See [4].) is embedded in a non-degenerate
hyperquadrics {[z0: z z z: z] e P(C) o,azz=O}. The holomor-
phic tensor field =0,adzdz on is conformally flat and its con-
formally class is invariant under the automorphisms of . Therefore
induces a tensor on the HM-orbifold which is called the fiat HCS. Ap-
plying a higher dimensional Version of Kobayashi and Naruki’s theory in
[3], we can calculate the flat HCS.

Theorem 1. Let p be the projection C{O}P(C). The pullback of
the fiat HCS is given by in homogeneous coordinates

p*= gdxdx
Ot,j3

where
goo 2(-- xxx--xx +XoX+2XoXX+2xxx-3xx)
go xx--2xx--7XoXXx+4XoX+xx+4xx--5xx
go=xx--xxx XoXX 4xx+5xxx
go 2xx--3xx+4XoXX+2XoXX--x
gi 2(xx+2xxxa-- XoXXa-- 3XoX--xx+2xxx)
g= x+4xxx+2XoXXW2xx 3x
gl XoX x-4xx+XoX+5XoXX xxx
g 2(--xx+XoXXW5XoX]-- x)
g=3(xx:-- --XoX 5XoZXx+xx)
g 2(-- x+xxx+5XoXX-- xx)
go go, go go:, g0= g0, g g:, g g, g=g.
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This flat HCS is degenerate along the trisecant surface to the rational
sextic curve C (52: 52: 2-22: 22+1). (See [1].)

Remark. A Hilbert modular surface or Q(J5 ) is embedded in the
HM-orbiold as the diagonal cubic of Clebsch. Pullback of the flat HCS to
the cubic surface gives the HCS obtained in [3, (6.3)].

We quote a theorem from [5].
Theorem 2 ([5, Theorem 2.5]). Assume the dimension of the space--

n=3. Let ajd#dx be a non-degenerate symmetric tensor which is con-
formally fiat. Then the system

a(w-- Fwp+ 1 Rw)=a(w-- Fwp+. 1 Rw)n--2 n--2
is of rank n+2 and ratio [So:... s/] of its linearly independent solu-
tions takes its values in a hyperquadrics. Here F} and R stand for the
Christoffel symbol and the Ricci tensor with respect to a .and w is the
derivative of w with respect to xt.

As a corollary, we obtain the explicit form o the uniformizing differ-
ential equation o the HM-orbifold in the sense o Yoshida [6]. However,
we have to omit the Christoffel symbol and the Ricci tensor with respect
to the flat HCS g because they are ar rom simple.
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