50. L ${ }^{p}$ Estimate for Abstract Linear Parabolic Equations

By Mariko GIga,*) Yoshikazu GIga,**) and Hermann Sohr***)
(Communicated by Kunihiko Kodaira, m. J. A., June 11, 1991)
§ 1. Introduction. We are interested in existence and a priori estimate of solutions of parabolic equations

$$
\left\{\begin{array}{rl}
d u / d t+A(t) u=f & 0 \leq t<T \leq \infty \tag{1.1}\\
u(0)=a & f \in L^{q}(0, T ; X) .
\end{array}\right.
$$

in a Banach space X by using the method of pure imaginary power $A(t)^{i s}$.
The case that A is independent of t is already investigated. In [1] Dore and Venni proved that when A has a bounded inverse the Cauchy problem (1.1) has a unique solution u for given $f \in L^{q}(0, T ; X)$ and $a=0$ such that

$$
\begin{equation*}
\int_{0}^{T}\left\|u^{\prime}(t)\right\|^{q} d t+\int_{0}^{T}\|A u(t)\|^{q} d t \leq C \int_{0}^{T}\|f(t)\|^{q} d t \tag{1.2}
\end{equation*}
$$

where $C=C(T, q)$, provided the following conditions are satisfied:
(1.3) $\quad X$ is a ζ-convex Banach space equipped with the norm $\|\cdot\|$,
(1.4) $\quad\left\|A^{i s}\right\| \leq K e^{\theta|s|} \quad$ for all $s \in R$ where $0 \leq \theta<\pi / 2$.

For the notion of ζ-convexity see [1] and the references cited there.
In [2] Sohr and Y. Giga extended this theory to the case that A need not have a bounded inverse and they showed that (1.2) holds with C independent of T; see also [3] for another proof. Furthermore they applied this a priori estimate to the Navier-Stokes equations.

The aim of this note is to extend their result to the case that A depends on time t. We show the existence and a priori estimate of solutions of (1.1) in the case $A=A(t)$ depends on t; at least when the domain of $A(t), \mathscr{D}(A(t))$ is independent of t.

Our result here is different and does not follow the solvability results in Tanabe [4], Yagi [5,6] because (i) our solution satisfies an L^{p} estimate and (ii) we assume less regularity for f and $A(t) A(0)^{-1}$. On the other hand, (1.3) and (1.4) are stronger conditions than the analyticity assumption in [4, 5, 6] (see [3]).
§2. Main result. Let X be a complex ζ-convex Banach space and $0<T \leq \infty . \quad \mathcal{L}(X)$ denotes the space of bounded linear operators in X.

We consider operators $A(t)$ defined in X for $0 \leq t<T$ satisfying:
(2.1) a) For $0 \leq t<T, A(t)$ is a closed linear operator, the domain $\mathscr{D}(A(t))$ and the range $\mathcal{R}(A(t))$ of $A(t)$, are dense in X and the null space $N(A(t))$ is zero.

[^0]b) For $0 \leq t \leq T$ and $\tau>0$ we have $(\tau+A(t))^{-1} \in \mathcal{L}(X)$ and there are constants $M(t)>0$ such that $\left\|(\tau+A(t))^{-1}\right\| \leq M(t) / \tau$ for $0 \leq t<T$, $\tau>0 ;\|\cdot\|$ denotes the operator norm.
c) The pure imaginary powers $A(t)^{i s}$ are in $\mathcal{L}(X)$ for all $0 \leq t<T$ and $s \in \boldsymbol{R}$. There are constants $K>0,0 \leq \theta<\pi / 2$ independent of t and s such that $\left\|A(t)^{i s}\right\| \leq K e^{\theta|s|}$ for $0 \leq t<T, s \in \boldsymbol{R}$.
d) The domain of $A(t)$ does not depend on t; so we write $\mathscr{D}(A)$ instead of $\mathscr{D}(A(t))$. There is a positive constant C such that $\|A(t) x\| \leq C\|A(\tau) x\|$ for $0 \leq \tau \leq t<T$ and $x \in \mathscr{D}(A)$; it follows that (the closure of) $A(t) A(\tau)^{-1} \in \mathcal{L}(X)$ for $0 \leq \tau \leq t<T$ and $\| A(t)$ - $A(\tau)^{-1} \| \leq C$.
e) The map $t, \tau \rightarrow A(t) A(\tau)^{-1}$ is continuous from $\{(\tau, t): 0 \leq \tau \leq t<T\}$ to $\mathcal{L}(X)$ where $\mathcal{L}(X)$ is equipped with the operator norm.
f) If $T=\infty$, then $\lim _{t>\tau \rightarrow \infty} A(t) A(\tau)^{-1}=I$ with respect to the operator norm where I is the identity.
Before discussing existence and a priori estimate of solutions to (1.1), we consider the appropriate space of initial values a. Let $1<q<\infty, 0 \leq$ $t<T \leq \infty$. We define
\[

$$
\begin{equation*}
\mathscr{I}_{t}^{q}=\left\{a \in X:\|a\|_{\mathscr{I}_{t}^{q}}=\left(\int_{t}^{T}\left\|A(t) e^{-(\tau-t) A(t)} a\right\|^{q} d \tau\right)^{1 / q}<\infty\right\} . \tag{2.2}
\end{equation*}
$$

\]

Remark. (i) We know (see [3]) from the assumption (2.1) that each $-A(t)$ generates an analytic bounded semigroup $\left\{e^{-\tau A(t)}: \tau>0\right\}$ with $\left\|e^{-\tau A(t)}\right\|$ $\leq C,\left\|A^{\alpha}(t) e^{-\tau A(t)}\right\| \leq C / \tau^{\alpha}(\alpha \geq 0)$. Using this estimates we can show that $\mathscr{D}(A) \cap \mathscr{R}(A(t)) \subseteq \mathscr{I}_{t}^{q}$ for $0 \leq t<T$. We know also that $\mathscr{D}(A) \cap \mathscr{R}(A(t))$ is dense in X.
(ii) \mathscr{I}_{t}^{q} is a normed space but not a Banach space in general; it becomes a Banach space when we add $\|a\|$ on the right in (2.2). However, we can extend the theory given here to more general initial values by using the completion of \mathscr{T}_{t}^{q} under the norm above.

We state the main theorem. We denote $\dot{u}=d u / d t ; L^{q}(0, T ; X)$ is the space of all measurable $f:[0, T] \rightarrow X$ with $\|f\|_{L q(0, T ; X)}=\left(\int_{0}^{T}\|f\|^{q} d t\right)^{1 / q}<\infty$.

Theorem. Let X be a complex ζ-convex Banach space and let $1<q$ $<\infty, 0<T \leq \infty$. Suppose $f \in L^{q}(0, T ; X)$ and $a \in \mathscr{I}_{0}^{q}$. Then under the assumption (2.1) a)-f), there exists a unique measurable function $u:[0, T) \rightarrow$ X with the following properties.
i) $\int_{0}^{T}\|\dot{u}\|^{q} d \tau<\infty, u(\tau) \in \mathscr{D}(A)$ for a.e. $\tau \in[0, T)$ and $\int_{0}^{T}\|A(\tau) u(\tau)\|^{q} d \tau<\infty$,
ii) $\dot{u}(\tau)+A(\tau) u(\tau)=f(\tau)$ and $u(0)=a$ for a.e. $\tau \in[0, T)$,
iii) $\int_{0}^{T}\|\dot{u}\|^{q} d \tau+\int_{0}^{T}\|A(\tau) u(\tau)\|^{q} d \tau \leq C\left[\|a\|_{q_{0}^{q}}^{q}+\int_{0}^{T}\|f(\tau)\|^{q} d \tau\right]$
where C is independent of a and f. In particular, if $T=\infty$, we obtain

$$
\int_{0}^{\infty}\|\dot{u}\|^{q} d \tau+\int_{0}^{\infty}\|A(\tau) u(\tau)\|^{q} d \tau \leq C\left[\|a\|_{\mathfrak{I}_{0}^{q}}^{q}+\int_{0}^{\infty}\|f(\tau)\|^{q} d \tau\right] .
$$

§3. Proof of the theorem. We introduce the function space:

$$
\begin{aligned}
W_{i}^{q}= & \{u:[t, T) \longrightarrow X: u \text { measurable, } u(\tau) \in \mathscr{D}(A) \text { for a.e. } \tau \in[t, T), \\
& \left.\int_{t}^{T}\|A(t) u(\tau)\|^{q} d \tau<\infty \quad \int_{t}^{T}\|\dot{u}\|^{q} d \tau<\infty\right\} \\
& \|u\|_{W^{q}}=\left(\int_{t}^{T}\|A(t) u(\tau)\|^{q} d \tau\right)^{1 / q}+\left(\int_{t}^{T}\|\dot{u}\|^{q} d \tau\right)^{1 / q} \quad 0 \leq t<T .
\end{aligned}
$$

We also introduce the trace space at t :

$$
F_{t}^{q}=\left\{u(t): u \in W_{t}^{q}\right\} \quad 0 \leq t<T
$$

with the quotient norm $\|a\|_{F_{t}^{q}}=\inf \left\{\|u\|_{W_{t}^{q}}: u \in W_{t}^{q} u(t)=a\right\}$.
An essential part of the proof is the following lemma. In the following, $C_{1}, C_{2}, C_{3}, \cdots$ are positive constants whose values are not specified.

Lemma 1. i) It holds $\mathscr{I}_{t}^{q}=F_{t}^{q}$ and the norms $\|a\|_{S_{l}^{q}}$, $\|a\|_{F_{i}^{q}}$ are equivalent.
ii) There exists a constant C such that $\|u\|_{q_{i}^{q}} \leq C\|u\|_{W_{i}^{q}}$.
iii) For each $a \in \mathscr{I}_{t}^{q}$ there exists some extension $u \in W_{t}^{q}$ with $a=u(t)$ and $\|u\|_{W_{t}^{q}} \leq C\|a\|_{I_{t}^{q}}$ where $C>0$ is independent of a. Such an extension is given by $u(\tau)=e^{-(\tau-t) A(t)}$ a for $t \leq \tau<T$.

Proof. First we observe that $\mathscr{I}_{t}^{q} \subseteq F_{t}^{q}$. To show this, let $a \in \mathscr{I}_{t}^{q}$ and put $u(\tau)=e^{-(\tau-t) A(t)} a$. Then it follows easily form the definition that $\|a\|_{F_{t}^{q} \leq} \leq$ $\|u\|_{W_{t}^{q}}=2\|a\|_{I_{t}^{q}}<\infty$. Thus we have $a \in F_{t}^{q}$.

Next we show the converse direction that $F_{t}^{q} \subseteq \mathscr{I}_{t}^{q}$. Let $a \in F_{t}^{q}$ and $u(\tau)=a$ with $u \in W_{t}^{b}$. Then we have the representation

$$
u(\tau)=e^{-(\tau-t) A(t)} a+\int_{t}^{\tau} e^{-(\tau-s) A(t)}[\dot{u}(s)+A(t) u(s)] d s
$$

We put

$$
u_{1}(\tau)=\int_{t}^{\tau} e^{-(\tau-s) A(t)}[\dot{u}+A(t) u] d s
$$

Then we see that $u_{1}(t)=0$ and $\dot{u}_{1}(s)+A(t) u_{1}(s)=\dot{u}(s)+A(t) u(s)$ for $t \leq s<T$. From the L^{q} estimate when A is independent of τ (see [2]) we see that

$$
\int_{t}^{T}\left\|\dot{u}_{1}\right\|^{q} d s<\infty, \quad \int_{t}^{T}\left\|A(t) u_{1}(s)\right\|^{q} d s<\infty
$$

which means that $u_{1} \in W_{t}^{q}$. Setting $u_{2}(\tau)=e^{-(\tau-t) \Delta(t)} a$ we obtain $u_{2}(\tau)=u(\tau)-$ $u_{1}(\tau)$ for $t \leq \tau<T$. From $u, u_{1} \in W_{t}^{q}$ we see $u_{2} \in W_{t}^{q}$. It follows that

$$
\begin{equation*}
\left\|u_{2}\right\|_{W_{t}^{q}}=2\|a\|_{q_{t}^{q}}<\infty . \tag{3.1}
\end{equation*}
$$

So we have $a \in \mathscr{I}_{t}^{q}$ and get $F_{t}^{q}=\mathscr{I}_{t}^{q}$.
From (3.1) we see that

$$
2\|a\|_{g_{t}^{q}}=\left\|u_{2}\right\|_{W_{t}^{q}} \leq\|u\|_{W_{t}^{q}}+\left\|u_{1}\right\|_{W_{i}^{q}}
$$

By [2] (see (1.2)) it follows

$$
\left\|u_{1}\right\|_{W_{i}^{q}} \leq C\left(\int_{t}^{T}\|\dot{u}(\tau)+A(t) u(\tau)\|^{q} d \tau\right)^{1 / q} \leq C\|u\|_{W_{t}^{q}} .
$$

Then we get $2\|a\|_{g_{t}^{q}} \leq C\|u\|_{W_{t}^{q}}$. This holds for all $u \in W_{t}^{q}$ with $u(t)=a$. It follows

$$
2\|a\|_{I_{t}^{q}} \leq C \inf \left\{\|u\|_{W_{t}^{q}}: u \in W_{i}^{q}, u(t)=a\right\}=C\|a\|_{F_{i}^{q}} .
$$

Therefore, we obtain $F_{t}^{q}=\mathscr{I}_{t}^{q}$ with equivalent norms $\|a\|_{\mathscr{S}_{t}^{q}},\|a\|_{F_{t}^{q}}$.
The properties ii) and iii) follow immediately.

In the next lemma we shall state the crucial a priori estimate for (1.1).
Lemma 2. Let $1<q<\infty, u \in W_{0}^{q}$ and set $f(\tau)=\dot{u}(\tau)+A(\tau) u(\tau)$ for $0 \leq \tau$ $<T$ where $0<T \leq \infty$. Then under the assumptions (2.1) a)-f) there exists some $C>0$ independent of u and T such that

$$
\int_{0}^{T}\|\dot{u}\|^{q} d \tau+\int_{0}^{T}\|A(\tau) u(\tau)\|^{q} d \tau \leq C\left(\|u(0)\|_{q_{0}^{q}}^{q}+\int_{0}^{T}\|f(\tau)\|^{q} d \tau\right)
$$

Proof. For simplicity, we carry out the proof only for $T=\infty$. Then the case $T<\infty$ will be clear.

First we consider a subinterval $\left[0, T_{1}\right]$ with $0<T_{1}<\infty$ and then we proceed to the next interval and so on. T_{1} will be fixed later on.

Set $a=u(0), u_{0}(\tau)=e^{-\tau A(0)} a$ and $u_{1}=u-u_{0}$. Then by Lemma 1 we have $a \in \mathscr{I}_{0}^{q}, u_{0} \in W_{0}^{q}$, and therefore $u_{1} \in W_{0}^{q}$. Using [2] we get

$$
\begin{equation*}
\left(\int_{0}^{T_{1}}\left\|\dot{u}_{1}\right\|^{q} d \tau\right)^{1 / q}+\left(\int_{0}^{T_{1}}\left\|A(0) u_{1}\right\|^{q} d \tau\right)^{1 / q} \leq C_{1}\left(\int_{0}^{T_{1}}\left\|\dot{u}_{1}+A(0) u_{1}\right\|^{q} d \tau\right)^{1 / q} \tag{3.2}
\end{equation*}
$$

Next we use the continuity of $A(\tau) A(0)^{-1}$ for $\tau \geq 0$ in the operator norm by (2.1) e), and for given $\varepsilon>0$ we can choose T_{1} so small that

$$
\begin{equation*}
\left(\int_{0}^{T_{1}}\left\|\left[A(\tau) A(0)^{-1}-I\right] A(0) u_{1}\right\|^{q} d \tau\right)^{1 / q} \leq \varepsilon\left(\int_{0}^{T_{1}}\left\|A(0) u_{1}\right\|^{q} d \tau\right)^{1 / q} \tag{3.3}
\end{equation*}
$$

From $u=u_{0}+u_{1}$, we get

$$
\begin{aligned}
& \left(\int_{0}^{T_{1}}\|\dot{u}\|^{q} d \tau\right)^{1 / q}+\left(\int_{0}^{T_{1}}\|A(\tau) u(\tau)\|^{q} d \tau\right)^{1 / q} \leq\left(\int_{0}^{T_{1}}\left\|\dot{u}_{0}\right\|^{q} d \tau\right)^{1 / q} \\
& \quad+\left(\int_{0}^{T_{1}}\left\|A(\tau) u_{0}(\tau)\right\|^{q} d \tau\right)^{1 / q}+\left(\int_{0}^{T_{1}}\left\|\dot{u}_{1}\right\|^{q} d \tau\right)^{1 / q}+\left(\int_{0}^{T_{1}}\left\|A(\tau) u_{1}(\tau)\right\|^{q} d \tau\right)^{1 / q} .
\end{aligned}
$$

Using (2.1) d) and $u_{0}(\tau)=e^{-\tau A(0)} u(0)$

$$
\begin{align*}
& \left(\int_{0}^{T_{1}}\left\|\dot{u}_{0}\right\|^{q} d \tau\right)^{1 / q}+\left(\int_{0}^{T_{1}}\left\|A(\tau) u_{0}(\tau)\right\|^{q} d \tau\right)^{1 / q} \leq\left(\int_{0}^{T_{1}}\left\|\dot{u}_{0}\right\|^{q} d \tau\right)^{1 / q} \tag{3.4}\\
& \quad+C_{1}\left(\int_{0}^{T_{1}}\left\|A(0) u_{0}(\tau)\right\|^{q} d \tau\right)^{1 / q} \leq C_{2}\left(\int_{0}^{T_{1}}\left\|A(0) u_{0}(\tau)\right\|^{q} d \tau\right)^{1 / q}=C_{3}\|u(0)\|_{q_{0}^{q}}
\end{align*}
$$

Using (3.2) and (3.3), and choosing $\varepsilon>0$ sufficiently small it holds

$$
\begin{aligned}
& \left(\int_{0}^{T_{1}}\left\|\dot{u}_{1}(\tau)+A(\tau) u_{1}(\tau)\right\|^{q} d \tau\right)^{1 / q} \\
& \quad=\left(\int_{0}^{T_{1}}\left\|\dot{u}_{1}(\tau)+A(0) u_{1}(\tau)+[A(\tau)-A(0)] u_{1}(\tau)\right\|^{q} d \tau\right)^{1 / q} \\
& \quad \geq\left(\int_{0}^{T_{1}}\left\|\dot{u}_{1}(\tau)+A(0) u_{1}(\tau)\right\|^{q} d \tau\right)^{1 / q}-\left(\int_{0}^{T_{1}}\left\|(A(\tau)-A(0)) u_{1}(\tau)\right\|^{q} d \tau\right)^{1 / q} \\
& \quad \geq C_{1}\left(\int_{0}^{T_{1}}\left\|\dot{u}_{1}\right\|^{q} d \tau\right)^{1 / q}+C_{2}\left(\int_{0}^{T_{1}}\left\|A(0) u_{1}(\tau)\right\|^{q} a \tau\right)^{1 / q}-\varepsilon\left(\int_{0}^{T_{1}}\left\|A(0) u_{1}(\tau)\right\|^{q} d \tau\right)^{1 / q} \\
& \quad \geq C_{3}\left(\int_{0}^{T_{1}}\left\|\dot{u}_{1}\right\|^{q} d \tau\right)^{1 / q} .
\end{aligned}
$$

We use this value as ε in all steps. We also get

$$
\begin{aligned}
\left(\int_{0}^{T_{1}}\left\|A(\tau) u_{1}(\tau)\right\|^{q} d \tau\right)^{1 / q} & \leq C\left(\int_{0}^{T_{1}}\left\|\dot{u}_{1}(\tau)+A(\tau) u_{1}\right\|^{q} d \tau\right)^{1 / q}+\left(\int_{0}^{T_{1}}\left\|\dot{u}_{1}\right\|^{q} d \tau\right)^{1 / q} \\
& \leq C\left(\int_{0}^{T_{1}}\left\|\dot{u}_{1}(\tau)+A(\tau) u_{1}(\tau)\right\|^{q} d \tau\right)^{1 / q}
\end{aligned}
$$

Combining these two inequalities, we obtain

$$
\begin{aligned}
& \left(\int_{0}^{T_{1}}\left\|\dot{u}_{1}\right\|^{q} d \tau\right)^{1 / q}+\left(\int_{0}^{T_{1}}\left\|A(\tau) u_{1}(\tau)\right\|^{q} d \tau\right)^{1 / q} \leq C\left(\int_{0}^{T_{1}}\left\|\dot{u}_{1}+A(\tau) u_{1}(\tau)\right\|^{q} d \tau\right)^{1 / q} \\
& \quad \leq C\left\{\left(\int_{0}^{T_{1}}\|\dot{u}+A(\tau) u(\tau)\|^{q} d \tau\right)^{1 / q}+\left(\int_{0}^{T_{1}}\left\|\dot{u}_{0}+A(\tau) u_{0}(t)\right\|^{q} d \tau\right)^{1 / q}\right\} \\
& \quad \leq C\left\{\left(\int_{0}^{T_{1}}\|\dot{u}+A(\tau) u(\tau)\|^{q} d \tau\right)^{1 / q}+\left(\int_{0}^{T_{1}}\left\|\dot{u}_{0}\right\|^{q} d \tau\right)^{1 / q}+\left(\int_{0}^{T_{1}}\left\|A(\tau) u_{0}(\tau)\right\|^{q} d \tau\right)^{1 / q}\right\} \\
& \quad \leq M\left(\int_{0}^{T_{1}}\|\dot{u}+A(t) u(\tau)\|^{q} d \tau\right)^{1 / q}+N\|u(0)\|_{q_{0}^{q}}
\end{aligned}
$$

Here M, N are constants. We used (3.4) in the last inequality. Now we obtain the result for the first interval $\left[0, T_{1}\right]$:

$$
\begin{align*}
& \left(\int_{0}^{T_{1}}\|\dot{u}\|^{q} d \tau\right)^{1 / q}+\left(\int_{0}^{T_{1}}\|A(\tau) u(\tau)\|^{q} d \tau\right)^{1 / q} \tag{3.5}\\
& \quad \leq M\left(\int_{0}^{T_{1}}\|\dot{u}+A(\tau) u(\tau)\|^{q} d \tau\right)^{1 / q}+N\|u(0)\|_{F_{0}^{q}}
\end{align*}
$$

We choose the next interval $\left[T_{1}, T_{2}\right]$ in the same way as above. Here we define for $T_{1} \leq \tau \leq T_{2}, u_{1}=u-u_{0}, u_{0}(\tau)=e^{-\left(t-T_{1}\right) A\left(T_{1}\right)} a$ and $a=u\left(T_{1}\right)$. In this case we obtain (3.5) with 0 replaced by T_{1} and T_{2} replaced by T_{1}, and so on.

Now we shall show how to choose $T_{1}, T_{2}, \cdots, T_{k}, T_{k+1}=\infty$; let $T_{0}=0$. We choose first the last point T_{k} by using (2.1)f). Then $\left[0, T_{k}\right.$] is compact. Hence the continuity by (2.1) e) holds uniformly for all $0 \leq \tau \leq t \leq T_{k}$. So we can choose a finite number of points T_{1}, \cdots, T_{k-1} for the same given value ε as above. Then we get for $\nu=0,1,2, \cdots, k$

$$
\begin{aligned}
& \left(\int_{T_{\nu}}^{T_{\nu+1}}\|\dot{u}\|^{q} d \tau\right)^{1 / q}+\left(\int_{T_{\nu}}^{T_{\nu+1}}\|A(\tau) u(\tau)\|^{q} d \tau\right)^{1 / q} \\
& \quad \leq M\left(\int_{T_{\nu}}^{T_{\nu+1}}\|\dot{u}+A(\tau) u(\tau)\|^{q} d \tau\right)^{1 / q}+N\left\|u\left(T_{\nu}\right)\right\|_{F_{T_{\nu}}^{q}}
\end{aligned}
$$

This leads to

$$
\begin{align*}
& \left(\int_{0}^{\infty}\|\dot{u}\|^{q} d \tau\right)^{1 / q}+\left(\int_{0}^{\infty}\|A(\tau) u(\tau)\|^{q} d \tau\right)^{1 / q} \tag{3.6}\\
& \quad \leq M\left(\int_{0}^{\infty}\|\dot{u}(\tau)+A(\tau) u(\tau)\|^{q} d \tau\right)^{1 / q}+N \sum_{\nu=0}^{k}\left\|u\left(T_{\nu}\right)\right\|_{F_{T_{\nu}}}
\end{align*}
$$

In the last step of our proof we show that we may remove the terms $\left\|u\left(T_{\nu}\right)\right\|_{F_{T \nu}^{q}}$ for $\nu>0$. We argue by contradiction. Suppose we find a sequence $u_{\rho} \in W_{0}^{q}, \rho=1,2, \cdots$, such that $\left(\int_{0}^{\infty}\left\|\dot{u}_{\rho}\right\|^{q} d \tau\right)^{1 / q}+\left(\int_{0}^{\infty}\left\|A(\tau) u_{\rho}(\tau)\right\|^{q} d \tau\right)^{1 / q}$ $=1$ for all ρ, and $\left(\int_{0}^{\infty}\left\|\dot{u}_{\rho}+A(\tau) u_{\rho}\right\|^{q} d \tau\right)^{1 / q}$ and $\left\|u_{\rho}(0)\right\|_{F_{0}^{q}}$ tend to 0 as $\rho \rightarrow \infty$. Applying (3.6) to u_{ρ}, we see that

$$
\begin{equation*}
1 \leq N \liminf _{\rho \rightarrow \infty}\left(\sum_{\nu=1}^{k}\left\|u_{\rho}\left(T_{\nu}\right)\right\|_{F_{T \nu}^{q}}\right) \tag{3.7}
\end{equation*}
$$

From (3.5) and (2.1) d), we get the estimate

$$
\begin{aligned}
& \left(\int_{0}^{T_{1}}\|\dot{u}\|^{q} d \tau\right)^{1 / q}+\left(\int_{0}^{T_{1}}\left\|A\left(T_{1}\right) u(\tau)\right\|^{q} d \tau\right)^{1 / q} \\
& \quad \leq C\left\{\left(\int_{0}^{T_{1}}\|\dot{u}+A(\tau) u(\tau)\|^{q} d \tau\right)^{1 / q}+\|u(0)\|_{F_{0}^{q}}\right\} .
\end{aligned}
$$

We have also the next estimate using the definition of W_{t}^{q} and \mathscr{I}_{t}^{q}.

$$
\begin{aligned}
\left\|u\left(T_{1}\right)\right\|_{F_{T_{1}}^{q}} & \leq \inf _{u\left(T_{1}\right)=v\left(T_{1}\right)}\left\{\left(\int_{T_{1}}^{T}\|\dot{v}(t)\|^{q} d t\right)^{1 / q}+\left(\int_{T_{1}}^{T}\left\|A\left(T_{1}\right) v(t)\right\|^{q} d t\right)^{1 / q}\right\} \\
& =\inf _{u\left(T_{1}\right)=\tilde{\tilde{v}}\left(T_{1}\right)}\left\{\left(\int_{T_{1}}^{2 T_{1}-T}-\|\dot{\tilde{v}}(s)\|^{q} d s\right)^{1 / q}+\left(\int_{T_{1}}^{2 T_{1}-T}-\left\|A\left(T_{1}\right) \tilde{v}(s)\right\|^{q} d s\right)^{1 / q}\right\} \\
& \leq\left(\int_{2 T_{1-T}}^{T_{1}}\|\dot{u}(t)\|^{q} d t\right)^{1 / q}+\left(\int_{2 T_{1}-T}^{T_{1}}\left\|A\left(T_{1}\right) u(t)\right\|^{q} d \tau\right)^{1 / q} \\
& =\left(\int_{0}^{T_{1}}\|\dot{u}(\tau)\|^{q} d \tau\right)^{1 / q}+\left(\int_{0}^{T_{1}}\left\|A\left(T_{1}\right) u(\tau)\right\|^{q} d \tau\right)^{1 / q} .
\end{aligned}
$$

Here we set $\tilde{v}(s)=v\left(2 T_{1}-s\right)$ and $T=2 T_{1}$ in the last part. Replacing u by u_{ρ} we see from the last two estimates and the assumption of contradiction that

$$
\left\|u_{\rho}\left(T_{1}\right)\right\|_{F_{T_{1}}^{q}} \longrightarrow 0 \quad \text { as } \rho \longrightarrow \infty
$$

Repeating the same conclusion to the next interval [T_{1}, T_{2}], we see that $\left\|u_{\rho}\left(T_{2}\right)\right\|_{F_{T_{2}}^{q} \rightarrow 0}$ as $\rho \rightarrow \infty$, and so on. It follows $\sum_{v=1}^{k}\left\|u_{\rho}\left(T_{\nu}\right)\right\|_{F_{T_{1}}^{q} \rightarrow 0}$ as $\rho \rightarrow \infty$. This fact contradicts the assumption. Lemma 2 is thus proved.

We shall complete this section by showing the existence of a solution u of the evolution equation (1.1) for given $a \in \mathscr{I}_{0}^{q}$ and $f \in L^{q}(0, T ; X)$.

The existence of the solution is already clear if $A(\tau) \equiv A(0)$ by [2, Theorem 2.3]. Then we use $\varepsilon>0$ and T_{1} as in the proof above to obtain

$$
\left\|\left(A(\tau) A(0)^{-1}-I\right) A(0) v\right\| \leq \varepsilon\|A(0) v\|
$$

for $v \in \mathscr{D}(A(0))$ and $\tau \in\left[0, T_{1}\right]$ by (2.1) e). So we see

$$
\|[A(\tau)-A(0)) v\| \leq \varepsilon\|A(0) v\| \quad \text { for all } v \in \mathscr{D}(A)
$$

Hence we obtain the existence of the solution in the general case $A(\tau)$ by using Kato's perturbation theorem. Then we extend this solution to the next interval $\left[T_{1}, T_{2}\right]$ and so on. This yields the result of the theorem.

References

[1] G. Dore and A. Venni: On the closedness of the sum of two closed operators. Math. Z., 196, 189-201 (1987).
[2] Y. Giga and H. Sohr: Abstract L^{p} estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Func. Anal. (to appear).
[3] J. Prüss and H. Sohr: On operators with bounded imaginary powers in Banach spaces. Math. Z., 203, 429-452 (1990).
[4] H. Tanabe: Equation of Evolution. Tokyo, Iwanami (1975) (in Japanese) ; English translation, London, Pitman (1979).
[5] A. Yagi: On the abstract linear evolution equations in Banach spaces. J. Math. Soc. Japan, 28, 290-303 (1976).
[6] --: On the abstract evolution equation of parabolic type. Osaka J. Math., 14, 557-568 (1977).

[^0]: *) School of General Education, Nippon Medical School.
 **) Department of Mathematics, Hokkaido University.
 *** Department of Mathematics, University of Paderborn, Germany.

