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50. L Estimate eor Abstract Linear Parabolic Equations

By Mariko GIGA, *) Yoshikazu GIGA,TM and Hermann SOHR***)

(Communicated by Kunihiko KODAIRA, M. g. A., June 11, 1991)

1o Introduction. We are interested in existence and a priori esti-
mate of solutions of parabolic equations

(1.1) (du/dt+A(t)u=f 0<t<T< co f e Lq(0, T- X).
u(O)=a

in a Banach space X by using the method of pure imaginary power A(t).
The case that A is independent of t is already investigated. In [1]

Dore and Venni proved that when A has a bounded inverse the Cauchy
problem (1.1) has a unique solution u for given f e Lq(O, T;X) and a.=0
such that

(1.2) : ,u.’(),,qd+: ,,Au(),,d<_C : ,,f() ,d

where C=C(T, q), provided the following conditions are satisfied"
(1.3) X is a e-convex Banach space equipped with the norm l" II,
(1.4) IIAII<Kesl for all s e R where 0<0<z/2.
For the notion of -convexity see [1] and the references cited there.

In [2] Sohr and Y. Giga extended this theory to the case that A need
not have a bounded inverse and they showed that (1.2) holds with C inde-
pendent of T; see also [3] for another proof. Furthermore they applied
this a priori estimate to the Navier-Stokes equations.

The aim of this note is to extend their result to the case that A de-
pends on time t. We show the existence and a priori estimate of solutions
of (1.1) in the case A=A(t) depends on t; at least when the domain of
A(t), _@(A(t)) is independent of t.

Our result here is different and does not follow the solvability results
in Tanabe [4], Yagi [5, 6] because (i) our solution satisfies an Lv estimate
and (ii)we assume less regularity for f and A(t)A(O)-1. On the other
hand, (1.3) and (1.4) are stronger conditions than the analyticity assump-
tion in [4, 5, 6] (see [3]).

2. Main result. Let X be a complex e-convex Banach space and
0< T< oo. _L’(X) denotes the space of bounded linear operators in X.

We consider operators A(t) defined in X for 0<t< T satisfying"
(2.1) a) For O<t< T, A(t) is a closed linear operator, the domain .@(A(t))

and the range (A(t)) of A(t), are dense in X and the null space
N(A(t)) is zero.
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b) For O_t_T and r>0 we have (r+A(t))-’ e _L(X) and there are
constants M(t)>O such that I(r+A(t))-’ll_M(t)/r for O_t<T,
r>0; II. denotes the operator norm.

c) The pure imaginary powers A(t) are in (X) or all 0t<T
and s e R. There are constants K>0, 0<=/2 independent of
t and s such that A(t)][Ke’’ for 0gt<T, s e R.

d) The domain of A(t) does not depend o,n t; so we write (A)
instead of (A(t)). There is a positive constant C such that
[A(t)x[]C[A(r)xl for 0rtT and x e (A) it follo.ws that
(the closure of) A(t)A(r)-e(X) for OrtT and [A(t)
A(r)-]]AC.

e) The map t, rA()A(r)- is continuous from {(r, $)"
to (X) where (X) is equipped with the operator norm.

f) If T , then lim> A($)A(v)-=I with respect to the operator
norm where I is the identity.

Before discussing existence and a priori estimate of solutions to (1.1),
we consider the appropriate space of initial values a. Let lq
t<TA. We define

(2.2) {a e X ,,a,,=(I ],A(t)e--)()a,,qdr)/q
Remark. (i) We know (see [3]) from the assumption (2.1) that each

--A(t) generates an analytic bounded semigroup (e-() 0} with
C, ]A"(t)e-()lgC/r" (a0). Using this estimates we can show that
2(A)Q(A(t))gff for Ogt<T. We know also that 2(A)Q(A(t)) is
dense in X.

(ii) is a normed space but not a Banach space in general; it be-
comes a Banach space when we add [a] on the right in (2.2). However,
we can extend the theory given here to more general initial values by
using the completion of under the norm above.

We state the main theorem. We denote =du/dt; Lq(O, T;X) is the

space of all measurable f" [0, T]oX with f ]](0, r;x) f ]dt

Theorem. Let X be a complex -convex Banach space and let l q

<, O<T. Suppose f e L(O, T X) a.nd a e . Then under the as-
sumption (2.1) a)-D, there exists a unique measurable function u" [0, T)
X with the following properties.

i) .[: ,,,,qdr<, u(r)e(A)for a.e. re [0, T)and.[; A(r)u(r) qdr<
ii) (r)+A(r)u(r)=f(r) and u(0)=a for a.e. r e [0, T),

where C is independent of a and f In pa.rticular, if T=, we obtain

. Proof of the theorem. We introduce the function space"
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(

Wq= u" [t, T) >X" u measurable, u(r)e (A) for a.e. r e [t, T),

Ilu Iw- [[A(t)u(r) [qdr + ll [qdr Ot< T.

We also introduce the trace space at t"
F {u(t) u e W} 0gt< T,

with the quotient norm ][a]]r=inf {]u]]" u e W u(t)=a}.
An essential part of the proof is the following lemma. In the follow-

ing, C,, C, C, are positive constants whose values are not specified.
Lemma 1. i) It holds ]=F and the norms la, [a] are equiva-

lent.
ii) There exists a constant C such that ]u[]zgC [ul.

iii) For each a e there exists some extension u e W with a.=u(t)
and ]]U[]wgC]]a]]zI where C>O is independent of a. Such an extension is

given by u(v)=e-(-*)(t)a for trT.
Proof. First we observe that %F. To show this, let a e ] and

put u(r)=e-(-*)(*)a, Then it follows easily form the definition that

U[w=2[a.]I<. Thus we have a e F.
Next we show the converse direction that F. Let a e F and

u(r)=a with u e W. Then we have the representation

u(r)=e--ta+: e- -[(s)+A(t)u(s)]ds.

We put

Then we see that u,(t)=O and (s)+A(t)u(s)=(s)+A(t)u(s) for tsT.
From the L estimate when A is independent of r (see [2]) we see that

which means that u e W. Setting u(r)=e-(-*)(t)a we obtain u(v):u(r)--
u(r) for trT. From u, u e W we see u e W. It follows that
(3.1) ui]w=2[a[l<.
So we have a e and get F .

From (3.1) we see that

By [2] (see (1.2)) it follows

Then we get 2]]a]]zC]]u]]. This holds for all u e Wg with u(t)=a. It
follows

Therefore, we o.btain Fg if: with equivalent norms a ]]z, a ].
The properties ii) and iii) follow immediately.
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In the next lemma we shall state the crucial a prio.ri estimate for (1.1).
Lemma 2. Let lq oo, u e Wqo and set f(v)=-it(r)-A(r)u(r) for 0_r

T where OT_ oo. Then under the assumptions (2.1) a)-) there exists
some CO independent of u and T such that

Proof. For simplicity, we carry out the proof only for T=oo. Then
the case To will be clear.

First we consider a subinterval [0, T,] with 0T< oo and then we
proceed to the next interval and so on. T, will be fixed later on.

Set a-u(0), uo(r)=e-()a and u=U-Uo. Then by Lemma 1 we have
a e , u0 e W, and therefore u e W. Using [2] we get

(3.2)

Next we use the continuity of A(r)A(0)- for r0 in the operator norm
by (2.1) e), and for given 0 we can choose T, so small that

(3.3) [A(r)A(O)--I]A(O)u ]]qdr

From U=Uo+U, we get

+(I: ,,dr +(I: ,.A(r)u(r),,dr

Using (2.1) d) and Uo(r)=e-()u(O)

=cu(0),.
Using (3.2) and (3.3), and choosing0 sufficiently small it holds

(f: ,(r)+A(0)u,(r)+ [A(r)-- A(O)]u(r),,dr)TM

We use this value as in all steps. We also get

Combining these two inequalities, we o,btain



No. 6] Lp Estimate for Parabolic Equations 201

Here M, N are constants. We used (3.4) in the last inequality. Now we
obtain the result for the first interval [0, T]"

(3.5) (I: ,, ,dr)+(I: ,.A(r)uer)dr)TM

We choose the next interval [T, T] in the same way as above. Here
we define for TgrgT, u=U--Uo, Uo(r)=e-(-r’)(r)a and a=u(T,). In
this case we obtain (3.5) with 0 replaced by T and T replaced by T,, and
SO on.

Now we shall show how to choose T, T, ..., T, T+= let T0=0.
We choose first the last point T by using (2.1) f). Then [0, T] is compact.
Hence the continuity by (2.1) e) holds uniformly or all OgrgtgT. So
we can choose a finite number of points T,,..., T_I for the same given
value e as above. Then we get for ,=0, 1, 2, ., k

]lldv + ][A(r)u(r) qdv
kdT

M IIA()u()lld WI ()114.
JT

This leads to

(3.6) (f: IlA(v)u(v)]lqdv)TM

In the last step of our proof we show that we may remove the terms
]]u(T)] for ,>0. We argue by contradiction. Suppose we find a se-

quence u, e Wg, p=l,2, ., such that (f: llgollqdr) TM + (f: IlA(v)uo(v) Iqdr)/q
=1 for all p, and ]l.+A(v)u,ollqdv and lu,(0)]]vg tend to 0 as po.

Applying (3.6) to uo, we see that

From (3.5) and (2.1) d), we get the estimate

(I; ’ qdT)TM ,qdT) TM

We have also the next estimate using the definition o W and
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u(T1) (T1) T1 T1

((2TI-T )l]q (12Yl-Y
u(Tx) =(T) T

2T-T 2T1-T

Here we set ()=v(2T--) and T=2T in the last art. Neplaeing by o
we see from the last two estimates and the assumption of contradiction that

Repeating the same conclusion to the next interval [T,, T], we see that

llu(T)O as p and so on It follows = Ilu(T)140 as
This fact contradicts the assumption. Lemma 2 is thus proved.

We shall complete this section by showing the existence of a solution
u of the evolution equation (1.1) for given a e and f e Lq(O, T; X).

The existence of the solution is already clear if A(r)A(0) by [2,
Theorem 2.3]. Then we use e)0 and T as in the proof above to obtain

(A(r)A(0)-’-- I)A(O)v gs A(O)v
for v e (A(0)) and r e [0, T] by (2.1) e). So we see

II[A()--A(O))vlIIIA(O)vll or all v e 2(A).
Hence we obtain the existence of the solution in the general case A(r) by
using Kato’s perturbation theorem. Then we extend this solution to the
next interval [T,, T] and so on. This yields the result of the theorem.
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