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In [5] there have been introduced the so-called "pseudo-processes" and
a stochastic calculus has been developed (in a certain direction). In [7],
starting with an equivalent definition or pseudo-processes, a stochastic in-
tegral has been introduced and afterwards it has been developed a similar
calculus but in other directions. What was missing in [7] is an It5 or-
mula for the stochastic integral, which will be discussed in this article.

Let W be a nonvoid set. We shall denote by Fin [0, 1] the set o all
finite subsets for the real interval [0, 1]. We suppose that for every I e
Fin [0,1] there is given =a tribe of parts trom W such that ()en0,
is an increasing family. We denote by ={ U I e Fin [0, t]} and t
the tribe generated by t. It is considered to be given P:I.--R/ addi-
tive such that P :=PI is a probability measure for every I e Fin [0, 1].
Let t e [0,1] be fixed by L(W,, P) we understand the set of all H:
-R additive such that, or every I e Fin [0, 1], H=H[,z is a real measure,
H is absolutely continuous with respect to P and the Radon-Nikodym de-

rivative dH is t-measurable a P integrable. When the pseudoprocess
dP

Ht has (locally) bounded densities and X is a usual martingale (or a semi-
martingale), then the stochastic integral (H(R)X) is given by the formula

-’j:.dH dMs+j’:-" dH dA where the first is an ItS-type integral (with re-
dP dP

spect to a local martingale), the second is Stieltjes and X=M+A. For
example (see [7]), if H is a pseudo-martingale, then H(R)X is well-defined
and the result is an ( t-usual martingale. Hence, if f e C(R) then, by
ItS, f(H(R)X) is a semimartingale.

In the sequel, the stochastic integral is made with respect to usual
Brownian motion B(0_t_l) and the integrand admits bounded densities

or (dH) ds +oo. Both imply that the stochastic integral is will
dP

defined. We have the following It5 tormula

f((H(R)B)t ) ’((H(R)B) q- (f’((H(R)B) _). H(R)B)t
1 dH )2+- ;: f"(H(R)B)_( dP

ds.

First remark that the integrals are well-defined: the densities of the first
integral are bounded and or the second, we can use Schwarz inequality.
Secondly, or the proof, it is sufficient to prove the ormula for polynomials,



No.. 7] It6’s Formula for Pseudo-processes 233

hence for the product fg (if the formula is true for f and g separately).
In particular H(R)B ((H(R)B) H)(R)B.

An extension of this formula can be obtained by taking as B not a

Brownian motion but a solution of Meyer’s equation [B]=t+.l" g(B,_)dB,

(see [4]) with gve0 (for g---0 we obtain [B]=t so [B] is continuous hence

Bt is. That is the Brownian motion). The result is similar to that of
Emery’s [1].

Combining this formula with the explicit equation solved in [7], Prop.
dHo5, one obtains that the measure H(A)= . dP

exp (Bt)dP is the unique

solution of the equation

f(Ht) f(Ho) q--f((H(R)B)o) -at- f’((H(R)B)_ H)(B)t
1 dH )+- : f"(H(R)B)_( dP

ds,

for every f like in ItS’s ormula.
It is the moment to remark that, if the pseudo-process H satisfies cer-

rain conditions, then the stochastic integral H(R)B represents a good candi-
date for a "FSlmer measure". More precisely, define m(R)((s,t]A)=

[(H(R)X)--(H(R)X)]dP for O_s_t_l anal A e(= [5, I[0, s] is
A

finite). The act that it is well defined can be seen in [5] or [6]. The result
is the following: if the pseudo-process H admits positive densities and X is
a positive martingale continuous in mean (in particular or a Brownian mo-
tion or Meyer’s solution of the structure equations), then m(R)x is counta-

bly additive. Indeed, one can see that m(R)x((s, t] A)=jJ dH....dXdP
dP

the positivity of the densities of H implies that m is positive. To obtain
the desired result, use Kluvanek criterion [3]:
(a) lira m(R)x((0, s] W)=m(R)x((0, t] W) and

(b) lira sup {m(R)x(C) Cc(0,1]A}=0 or jA.

To verify (a)observe i dH dXdP’the inside integral is of ItS-type,
dP

hence it converges to [, but X is mean continuous, and so is the inside

integral; this implies the convergence of (a). For the second statement,
take T((o)= inf {t (t, o) e C} and, using the fact that , is generated by the
stochastic intervals of stopping times, we obtain

m(R):c(C)m(R)((T, 1])= dH.--z dX,.dP (H(R)X)dP >0
(r,l dP

by Beppo-Levi (An).
Now, as a process, what is the shape of (H(R)X)t? Using the tech-

nique used in [2], we shall prove that, under a suitable hypothesis, the
stochastic integral is a quasi-martingale. Indeed, from the existence of
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(H(R)X) we see that the densities are locally bounded and from the exist-
ence of m(R)x it follows that the densities are positive. So., if the densities
o.f H are uniformly bounded and positive, then the variation (as a measure)
of m(R)x is bounded; hence by [2] we obtain that the stochastic integral is
a quasi-martingale. By the present It5 formula, we obtain that for any

f e CS(R), the process f(H(R)B) is a quasi-martingale.
Moreover, even in the vectorial case (when the processes take values

in a reflexive Banach space), the conclusions remain true as is seen by
understanding the integrability in the sense of Pettis (see [8]). By the
way, it is sufficient to consider the vectorial case only; the scalar case be-
ing its consequence for positive processes (the converse is generally false,
as it is shown in [8]).

As a particular (vectorial) case, consider that the densities take values
in the Banach space of linear and continuous function from a Banach space
G into a Hilbert space E and the trajectories are P-continuous (a.e.). We
integrate H with respect to B(O_t_l) behaving like a Brownian motion,
each B being G-valued random variable (in short: W-G r.v.) (see [8]).

dHsDenote by (H(R)B) (after McShane) the limit in probability of )__
dP

(Btj+l--Btj) when max.=l,...,n(tj+l--tj)--0 if O=t_t2_...tn+=t_l and

s_t. The integral is well-defined (see [8]) if, or example sup0
dP

< const. P-a.e. and[[ dH.ll is uniformly P-integrable. One can easily

see that, if the densities are vectorial quasi-martingales, then the integral

is a vectorial quasi-martingale, too. For such integrals, It5 formula is

similar to the o.ne at the beginning (with slight modifications" f is twice

Frchet differentiable on the space of r.v. from W to E and the last in-

tegral contains dH.]l (the norm of G-E r.v.). One can make similar re-
dP

marks concerning this formula and the equations solved in [8].)
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