57. A Reduction of Hamiltonian Systems with Multi-time Variables Along a Regular Singularity

By Hironobu Kimura,*) Atusi Matumiya,**)
and Kyoichi Takano**)
(Communicated by Kunihiko Kodaira, m. J. A., Sept. 12, 1991)

1. Introduction. Let $(t, x)=\left(t_{1}, \cdots, t_{N}, x_{1}, \cdots, x_{2 n}\right)$ be the coordinates of $\mathbf{C}^{2 n+N}$ and let $D(r, \rho)$ be an unbounded domian in $\mathbf{C}^{2 n+N}$ defined by

$$
D(r, \rho):=\left\{(t, x) \in \mathbf{C}^{2 n+v} ;|t|<r,\left|x_{1} x_{n+1}\right|,\left|t_{1} x_{n+1}\right|,\left|x_{i}\right|<\rho,(i \neq n+1)\right\}
$$

where $|a|:=\max \left\{\left|a_{1}\right|, \cdots,\left|a_{m}\right|\right\}$ for $a=\left(a_{1}, \cdots, a_{m}\right) \in \mathbf{C}^{m}$. The projection image to $D(r, \rho)$ to the t-space is a polydisk with center 0 , which we denote by $\Delta(r):=\left\{t \in \mathbf{C}^{N} ;|t|<r\right\}$. The domain $D(r, \rho)$ is a neighbourhood of $(0,0)$.

Consider a completely integrable Hamiltonian system of the form :

$$
t_{i} \partial_{i} x=J H_{x}^{i}, \quad J=\left(\begin{array}{rc}
0 & I_{n} \tag{1}\\
-I_{n} & 0
\end{array}\right), \quad 1 \leq i \leq N
$$

with Hamiltonians H^{1}, \cdots, H^{N} holomorphic in $D(r, \rho)$, where $\partial_{i}=\partial / \partial t_{i}$ and $H_{x}^{i}:={ }^{t}\left(H_{x_{1}}^{i}, \cdots, H_{x_{2 n}}^{i}\right)$ is the gradient vector of H^{i} in x. The system (1) is said to have a singularity of regular type along a hyperplane $S:=\{t \in \Delta(r)$; $\left.t_{1}=0\right\}$, if $H^{i} / t_{i}(2 \leq i \leq N)$ are holomorphic in $D(r, \rho)$ and if H^{1} does not have t_{1} as a factor.

The purpose of this note is to obtain a reduction theorem for the system (1) with a singularity of regular type along S (Theorem 1). This result will be applied to the Hamiltonian system \mathcal{H}_{n} (see § 2) which is a generalization of the sixth Painleve system [7] to a system of partial differential equations obtained by a monodromy preserving deformation.

We say that a symplectic transformation $\phi:(t, x) \rightarrow(t, X)$ is \#-symplectic if ϕ is holomorphic on $D(r, \rho)$ and if $D\left(r^{\prime}, \rho^{\prime}\right) \subset \phi(D(r, \rho))$ for some positive r^{\prime} and ρ^{\prime}.

We define a class of Hamiltonians studied in this note. Consider a Hamiltonian system (1) with a Hamiltonian $\mathbf{H}=\left(H^{1}, \cdots, H^{N}\right)$. We expand H^{i} in x as

$$
H^{i}(t, x)={ }^{t} H_{x}^{i}(t, 0) x+\frac{1}{2} t x H_{x x}^{i}(t, 0) x+\sum_{\substack{\alpha+e_{1}+e_{n+1} \geq 0 \\ \mid \alpha+e_{1}+e_{n}+1 \geq 3}} h_{\alpha}^{i}(t) x^{\alpha+e_{1}+e_{n+1}}
$$

for $1 \leq i \leq N$, where $H_{x x}^{i}$ denotes the Hessian of H^{i} with respect to x and $x^{\alpha+e_{1}+e_{n+1}}=x_{1}^{\alpha_{1}+1} \cdots x_{n}^{\alpha_{n}} x_{n+1}^{\alpha_{n}+1+1} \cdots x_{2 n}^{\alpha_{2} n}$.

We assume the following four conditions:
(A-1) $H^{1}, H^{2} / t_{2}, \cdots, H^{N} / t_{N}$ are bounded holomorphic functions in $D(r, \rho)$.
(A-2) H^{1} satisfies

[^0]\[

\left.J H_{x}^{1}\right|_{t_{1}=0, x=0}=\left($$
\begin{array}{c}
* \\
0 \\
\vdots \\
0
\end{array}
$$\right),\left.\quad J H_{x x}^{1}\right|_{t_{1}=0, x=0}=\left($$
\begin{array}{cc:c}
* & 0 & 0 \\
\vdots & \\
\hdashline * \ldots * * & -\eta * \ldots * \\
\vdots & 0 & 0 \\
* &
\end{array}
$$\right]
\]

where $*$ stands for a function of $t^{\prime}=\left(t_{2}, \cdots, t_{N}\right)$.
(A-3) $\quad \eta \in \mathbf{C} \backslash(-\infty, 0] \cup[1, \infty)$.
(A-4) $\left.h_{\alpha}^{1}(t)\right|_{t_{1}=0}=0$ if $\alpha_{1}=\alpha_{n+1}$ and $\alpha \notin \mathbf{Z}\left(e_{1}+e_{n+1}\right)$.
The condition (A-1) implies that the singular locus of the system (1) is $S=\Delta(r) \cap\left\{t_{1}=0\right\}$. Set $\mathcal{A}_{r, \rho}:=\left\{\mathbf{H}=\left(H^{1}, \cdots, H^{v}\right) ; \mathbf{H}\right.$ satisfies $\left.(A-1), \cdots,(A-4)\right\}$.
Then our main theorem is
Theorem 1. For a completely integrable Hamiltonian system (1) with $\mathbf{H} \in \mathcal{A}_{r, \rho}$, there exists a \#-symplectic transformation $(t, x) \rightarrow(t, X)$ given by $x=\varphi(t, X) \in \mathcal{O}_{D\left(r^{\prime}, \rho^{\prime}\right)}^{2 n}, r^{\prime}, \rho^{\prime}>0$, such that it takes the system (1) into
(2)

$$
t_{i} \partial_{i} X=J H_{\infty, X}^{i}, \quad 1 \leq i \leq N
$$

with the Hamiltonian \mathbf{H}_{∞} :

$$
\begin{aligned}
& H_{\infty}^{1}=\eta X_{1} X_{n+1}+\sum_{m \geq 1} h_{m\left(e_{1}+e_{n+1}\right)}^{1}(0)\left(X_{1} X_{n+1}\right)^{m+1}, \\
& H_{\infty}^{2}=\cdots=H_{\infty}^{N}=0
\end{aligned}
$$

Remark that we can obtain the Hamiltonian \mathbf{H}_{∞} from a given Hamiltonian $\mathbf{H} \in \mathcal{A}_{r, \rho}$ by picking up the terms with powers $\alpha=m\left(e_{1}+e_{n+1}\right)$ and by setting $t=0$. Moreover, by solving the system (2), we can obtain a general solution of the system (1) through the \#-symplectic transformation. In fact,

Corollary 2. A Hamiltonian system (1) with $\mathbf{H} \in \mathcal{A}_{r, \rho}$ has a 2n-parameter family of solutions of the form

$$
x(t)=\varphi(t, X(t))
$$

where $\varphi(t, X)$ is the transformation given in Theorem 1 and

$$
\begin{aligned}
& X(t)=\left(c_{1} t_{1}^{\eta+h\left(c_{1} c_{n+1}\right)}, c_{2}, \cdots, c_{n}, c_{n+1} t_{1}^{-\eta-h\left(c_{1} c_{n+1}\right)}, c_{n+2}, \cdots, c_{2 n}\right), \\
& h(z)=\sum_{m \geq 1}(m+1) h_{m\left(e_{1}+e_{n+1}\right)}^{1}(0) z^{m}
\end{aligned}
$$

$c_{1}, \cdots, c_{2 n}$ being complex constants.
2. The Hamiltonian system \mathcal{H}_{n}. The system \mathcal{H}_{n} is a completely integrable system of exterior differential 1-forms
$\mathscr{H}_{n}:$

$$
\left\{\begin{array}{c}
\omega_{i}=d q_{i}-\sum_{1 \leq j \leq n} \frac{\partial H^{j}}{\partial p_{i}} d t_{j}=0, \\
\omega_{n+i}=d p_{i}+\sum_{1 \leq j \leq n} \frac{\partial H^{j}}{\partial q_{i}} d t_{j}=0,
\end{array} \quad(1 \leq i \leq n) .\right.
$$

The Hamiltonians H^{i} are polynomials in (q, p) with coefficients rational in $t=\left(t_{1}, \cdots, t_{n}\right)$ of the form

$$
H^{i}=\frac{1}{t_{i}\left(t_{i}-1\right)}\left[\sum_{1 \leq j, k \leq n} E_{j k}^{i}(t, q) p_{j} p_{k}-\sum_{1 \leq j \leq n} F_{j}^{i}(t, q) p_{j}+\kappa q_{i}\right]
$$

with $E_{j k}^{i}(t, q), F_{j}^{i}(t, q) \in \mathbf{C}(t)[q]$ such that

$$
E_{j k}^{i}=E_{i k}^{j}=E_{i j}^{k}, \quad F_{j}^{i}=F_{i}^{j}, \quad 1 \leq i, j \leq n .
$$

Explicitly,

$$
\begin{gathered}
E_{j k}^{i}= \begin{cases}q_{i} q_{j} q_{k} & \text { if } i, j, k \text { are distinct, } \\
q_{i} q_{j}\left(q_{j}-R_{j i}\right) & \text { if } i \neq j=k, \\
q_{i}\left(q_{i}-1\right)\left(q_{i}-t_{i}\right)-\sum_{1 \leq a \leq n, a \neq i} T_{i a} q_{i} q_{a} & \text { if } i=j=k,\end{cases} \\
F_{j}^{i}=\left\{\begin{array}{cc}
\left(\theta_{n+1}-1\right) q_{i}\left(q_{i}-1\right)+\theta_{n+2} q_{i}\left(q_{i}-t_{i}\right)+\theta_{i}\left(q_{i}-1\right)\left(q_{i}-t_{i}\right) \\
+\sum_{1 \leq k \leq n, k \neq i}\left\{\theta_{k} q_{i}\left(q_{i}-R_{i k}\right)-\theta_{i} T_{i k} q_{k}\right\} & \text { if } i=j, \\
\left(\sum_{1 \leq k \leq n+2} \theta_{k}-1\right) q_{i} q_{j}-\theta_{i} R_{i j} q_{j}-\theta_{j} R_{j i} q_{i} & \text { if } i \neq j,
\end{array}\right.
\end{gathered}
$$

where

$$
\begin{gathered}
\kappa=\frac{1}{4}\left[\left(\sum_{1 \leq i \leq n+2} \theta_{i}-1\right)^{2}-\theta_{n+3}^{2}\right], \\
R_{i j}=\frac{t_{i}\left(t_{j}-1\right)}{t_{j}-t_{i}}, \quad T_{i j}=\frac{t_{i}\left(t_{i}-1\right)}{t_{i}-t_{j}}
\end{gathered}
$$

and $\theta_{1}, \cdots, \theta_{n+3}$ are complex constants.
Let $V \simeq \mathbf{C}^{n+2}$ be the space of parameters $\theta:=\left(\theta_{1}, \cdots, \theta_{n+3}\right)$ of \mathcal{H}_{n}, and let $\mathscr{H}_{n}(\theta)$ be the system \mathscr{H}_{n} with a parameter $\theta \in V$. For a birational transformation $T:(q, p, t) \rightarrow\left(q^{*}, p^{*}, t^{*}\right)$, we denote by $T \cdot \mathscr{H}_{n}(\theta)$ the system

$$
\left(T^{-1}\right)^{*} \omega_{i}=0, \quad 1 \leq i \leq 2 n
$$

A symmetry of \mathcal{H}_{n} is a pair $\sigma:=(T, l)$ of a birational transformation $T:(q, p, t) \rightarrow\left(q^{*}, p^{*}, t^{*}\right)$ and an affine transformation $l: V \rightarrow V$ such that $T \cdot \mathscr{H}_{n}(\theta)=\mathcal{H}_{n}(l(\theta))$ for all $\theta \in V$. For symmetries $\sigma=(T, l)$ and $\sigma^{\prime}=\left(T^{\prime}, l^{\prime}\right)$, the product and the inverse are defined by $\sigma \cdot \sigma^{\prime}:=\left(T \circ T^{\prime}, l \circ l^{\prime}\right)$ and $\sigma^{-1}:=$ (T^{-1}, l^{-1}), respectively.

Then we have
Proposition 3. There is a group of symmetries G of \mathcal{H}_{n} which is isomorphic to the symmetric group \mathbf{S}_{n+3} on $n+3$ elements.

As to the explicit form of generators of G, see [5].
Consider the system \mathscr{H}_{n} on the space $\left(\mathbf{P}^{1}\right)^{n} \times \mathbf{C}^{2 n} \ni(t, q, p)$, then the singular locus S of \mathcal{H}_{n} is

$$
S=\underset{1 \leq i, j \leq n+3}{ } S_{i j}, \quad S_{i j}:=\left\{t \in\left(\mathbf{P}^{1}\right)^{n} ; t_{i}=t_{j}\right\}
$$

where $t_{n+1}=0, t_{n+2}=1$ and $t_{n+3}=\infty$. Set

$$
S^{\circ}:=\bigcup_{i, j} S_{i j}^{\circ}, \quad S_{i j}^{\circ}:=S_{i j} \backslash \bigcup_{(k, l) \neq(i, j)}\left(S_{i j} \cap S_{k l}\right),
$$

and $S_{\text {sing }}=S \backslash S^{\circ}$. The hyperplanes $S_{i j}$ in $\left(\mathbf{P}^{1}\right)^{n}$ are irreducible components of S and S° is the set of its smooth points. Each element $\sigma=(T, l) \in G$ induces a birational transformation $t \rightarrow t^{*}$ of $\left(\mathbf{P}^{1}\right)^{n}$. If there is no fear of confusion, we denote the birational transformation $t \rightarrow t^{*}$ also by T. We investigate how the group G acts on the singular locus S.

Proposition 4. Let $\sigma=(T, l)$ be an element of G.
(a) T maps S into itself.
(b) If $T\left(S_{i j}^{\circ}\right) \subset S^{\circ}, T$ is biholomorphic on $S_{i j}^{\circ}$.
(c) For any $S_{i j}^{\circ}$, there is an element of G which induces a biholomorphic map from $S_{1, n+1}^{\circ}$ to $S_{i j}^{\circ}$.

By virtue of this proposition we have only to study the solutions of \mathscr{H}_{n} along $S_{1, n+1}^{\circ}$ in order to study those along S°.
3. Restriction of $\mathscr{H}_{n}(\boldsymbol{\theta})$ to $\boldsymbol{S}_{1, n+1}^{\circ}$. In this section we show that the restriction of \mathscr{H}_{n} to Σ_{0} (see Proposition 6) is \mathscr{H}_{n-1}. We make use of this fact when we apply Theorem 1 to $\mathscr{H}_{n}(\theta)$. Consider, in general, a completely integrable Pfaffian system

$$
\begin{equation*}
t_{i} \partial_{i} x=F^{i}(t, x), \quad 1 \leq i \leq N \tag{3}
\end{equation*}
$$

with independent variables $t=\left(t_{1}, \cdots, t_{N}\right)$ and unknowns $x={ }^{t}\left(x_{1}, \cdots, x_{p}\right)$. Assume that

$$
F^{1}, F^{2} / t_{2}, \cdots, F^{N} / t_{N} \in \mathcal{O}_{U}^{p}
$$

where $U=\{(t, x) ;|t|<r,|x|<\rho\}$. Then the system (3) has a singularity along the hyperplane $S:=\left\{t \in \Delta(r) ; t_{1}=0\right\}$. We want to find "a Pfaffian system obtained by the restriction of the system (3) to its singular locus $S^{\prime \prime}$. To this end, suppose that there is a solution of (3) of the form

$$
x=\vec{a}(t)=\sum_{m \geq 0} \vec{a}_{m}\left(t^{\prime}\right) t_{1}^{m},
$$

holomorphic at $t=0$, where $t^{\prime}=\left(t_{2}, \cdots, t_{N}\right)$. Since $\lim _{t_{1} \rightarrow 0} \vec{a}(t)=\vec{a}_{0}\left(t^{\prime}\right), \vec{a}_{0}\left(t^{\prime}\right)$ must satisfy the equations

$$
\begin{align*}
& F^{1}\left(0, t^{\prime}, x\right)=0, \tag{4}\\
& t_{i} \partial_{i} x=F^{i}\left(0, t^{\prime}, x\right), \quad 2 \leq i \leq N . \tag{5}
\end{align*}
$$

The system (5) with (4) is called the restriction of (3) to its singular locus S. Put $\Sigma=\left\{\left(0, t^{\prime}, x\right) \in U ; F^{1}\left(0, t^{\prime}, x\right)=0\right\}$. For the restriction (4) and (5), we can prove

Proposition 5. (a) If the system (3) is completely integrable, so is the system (5).
(b) Let $x\left(t^{\prime}\right)$ be a solution of the system (5) satisfying $\left(0, t_{0}^{\prime}, x\left(t_{0}^{\prime}\right)\right) \in \Sigma$ for some t_{0}^{\prime}. Then $\left(0, t^{\prime}, x\left(t^{\prime}\right)\right) \in \Sigma$ as long as $x\left(t^{\prime}\right)$ is defined.

Now we study the restriction of the system $\mathscr{H}_{n}(\theta)$ to a singular locus $S_{1, n+1}^{\circ}$. Note that the Hamiltonian H^{1} has a simple pole along $S_{1, n+1}^{\circ}$ and H^{2}, \cdots, H^{n} are holomorphic there. Set

$$
L^{1}:=\left.t_{1} H^{1}\right|_{t_{1}=0}, \quad L^{i}:=\left.H^{i}\right|_{t_{1}=0} \quad(2 \leq i \leq n),
$$

and define the variety $\Sigma \subset \mathbf{C}^{3 n}$ for $\mathcal{H}_{n}(\theta)$ by

$$
\Sigma=\left\{\left(0, t^{\prime}, q, p\right) \in \mathbf{C}^{3 n} ; L_{q_{i}}^{1}=L_{p_{i}}^{1}=0(1 \leq i \leq n)\right\} .
$$

Proposition 6. For the system $\mathcal{H}_{n}(\theta)$ with $1-\theta_{1}-\theta_{n+1}, \theta_{2}, \cdots, \theta_{n} \neq 0$, the algebraic variety Σ is decomposed into irreducible components as

$$
\Sigma=\Sigma_{0} \cup \bigcup_{1 \leq i \leq 2 n} \Sigma_{i},
$$

where

$$
\Sigma_{0}=\left\{\left(0, t^{\prime}, q, p\right) \in \mathbf{C}^{3 n} ; q_{1}=0,\left(1-\theta_{1}-\theta_{n+1}\right) p_{1}=f\left(q^{\prime}, p^{\prime}\right)\right\}
$$

with

$$
\begin{aligned}
& f=\sum_{j, k \neq 1}\left(q_{j} p_{j}\right)\left(q_{k} p_{k}\right)-\sum_{k \neq 1} q_{k} p_{k}^{2}-\sum_{k \neq 1}\left(\theta q_{k}-\theta_{k}\right) p_{k}+\kappa, \\
& \theta=\theta_{1}+\cdots+\theta_{n+2}-1
\end{aligned}
$$

and $\Sigma_{i}\left(1 \leq i \leq 2^{n}\right)$ are $n-1$ dimensional manifolds defined by the equations $q=c(i)$ and $p=d(i), c(i)$ and $d(i)$ being certain constants.

Corollary 7. If there is a solution $(q(t), p(t))$ of $\mathcal{H}_{n}(\theta)$ holomorphic at $t_{0} \in S_{1, n+1}^{\circ}$, then $(t, q(t), p(t)) \in \Sigma$ for $t \in S_{1, n+1}^{\circ}$.

Consider the restriction of the system $\mathcal{H}_{n}(\theta)$ to $S_{1, n+1}^{\circ}$. By the explicit form of L^{i}, we see that $\left.L_{q_{j}}^{i}\right|_{\Sigma_{0}}$ and $\left.L_{p_{j}}^{i}\right|_{\Sigma_{0}}(2 \leq i, j \leq n)$ do not contain p_{1} explicitly. Therefore the system

$$
\begin{equation*}
\frac{\partial q_{j}}{\partial t_{i}}=\frac{\partial L^{i}}{\partial p_{j}}, \quad \frac{\partial p_{j}}{\partial t_{i}}=-\frac{\partial L^{i}}{\partial q_{j}}, \quad 2 \leq i, j \leq n \tag{6}
\end{equation*}
$$

on Σ_{0} is completely integrable by virtue of Proposition 5.
Proposition 8. If $1-\theta_{1}-\theta_{n+1} \neq 0$, the system (6) on Σ_{0} is the Hamiltonian system $\mathcal{H}_{n-1}\left(\theta_{2}, \cdots, \theta_{n}, \theta_{1}+\theta_{n+1}, \theta_{n+2}, \theta_{n+3}\right)$.

This observation combined with Proposition 5 leads to
Proposition 9. Suppose that $1-\theta_{1}-\theta_{n+1} \notin \mathbf{Z}$. Let $\left(0, t_{0}^{\prime}\right) \in S_{1, n+1}^{\circ}$ and let $\left(q^{\prime}, p^{\prime}\right)=\left(b_{2}\left(t^{\prime}\right), \cdots, b_{n}\left(t^{\prime}\right), b_{n+2}\left(t^{\prime}\right), \cdots, b_{2 n}\left(t^{\prime}\right)\right)$ be an arbitrary solution of the system (6), which is $\mathcal{H}_{n-1}\left(\theta_{2}, \cdots, \theta_{n}, \theta_{1}+\theta_{n+1}, \theta_{n+2}, \theta_{n+3}\right)$, holomorphic at $t^{\prime}=t_{0}^{\prime}$. If we define $b_{1}\left(t^{\prime}\right)$ and $b_{n+1}\left(t^{\prime}\right)$ so that $\left(0, t^{\prime}, \vec{b}\left(t^{\prime}\right)\right) \in \Sigma_{0}, \vec{b}\left(t^{\prime}\right):={ }^{t}\left(b_{1}\left(t^{\prime}\right)\right.$, $\left.\cdots, b_{2 n}\left(t^{\prime}\right)\right)$ by using Proposition 6, then there is a unique solution $(q, p)=$ $\vec{a}(t)$ of $\mathscr{F}_{n}(\theta)$ holomorphic in an open neighbourhood of t_{0} in $\left(\mathbf{P}^{1}\right)^{n}$ satisfying

$$
\lim _{t_{1} \rightarrow 0} \vec{a}(t)=\vec{b}\left(t^{\prime}\right)
$$

In particular, we have
Corollary 10. Suppose the same assumption as in Proposition 9. Then, for any $t_{0} \in S_{1, n+1}^{\circ}$ and $b \in \mathbf{C}^{2 n}$ with $\left(t_{0}, b\right) \in \Sigma_{0}$, there is a unique solution $\vec{a}(t)$ of $\mathscr{H}_{n}(\theta)$ which is holomorphic at t_{0} and $\lim _{t \rightarrow t_{0}} \vec{a}(t)=b$.
4. Application of Theorem 1 to \mathcal{A}_{n}. In this section, we use $x=$ $\left(x_{1}, \cdots, x_{2 n}\right)$ instead of (q, p). Suppose that $\eta:=1-\theta_{1}-\theta_{n+1} \in \mathbf{C} \backslash(-\infty, 0] \cup$ $[1, \infty)$, then the system $\mathcal{H}_{n}(\theta)$ satisfies the assumptions (A-1), \cdots, (A-4) in Section 1. Theorem 1 tells us that there is a \#-symplectic transformation $(t, x) \rightarrow(t, X)$ which reduces $\mathcal{H}_{n}(\theta)$ to a Hamiltonian system (2) with the Hamiltonian \mathbf{H}_{∞} :

$$
H_{\infty}^{1}=\eta X_{1} X_{n+1}+\left(X_{1} X_{n+1}\right)^{2}, \quad H_{\infty}^{2}=\cdots=H_{\infty}^{n}=0
$$

This observation combined with Proposition 9 leads to
Theorem 11. Suppose that $\eta:=1-\theta_{1}-\theta_{n+1} \in \mathbf{C} \backslash(-\infty, 0] \cup[1, \infty)$. Then, for any holomorphic solution $\vec{a}(t)$ of $\mathscr{H}_{n}(\theta)$ at $t_{0} \in S_{1, n+1}^{\circ}$ obtained in Proposition 9, there is a 2n-parameter family of solutions of $\mathscr{H}_{n}(\theta)$ of the form

$$
x(t)=\vec{a}(t)+\varphi(t, X(t)), \quad \varphi(t, X) \in\left(\mathscr{M}_{X}\right)^{2 n}
$$

where $x=\vec{a}(t)+\varphi(t, X)$ is a \#-symplectic transformation for a domain
$D\left(t_{0}, r, \rho\right):=\left\{(t, x) \in \mathbf{C}^{3 n} ;\left|t-t_{0}\right|<r,\left|x_{1} x_{n+1}\right|,\left|t_{1} x_{n+1}\right|,\left|x_{i}\right|<\rho(i \neq n+1)\right\}$
with some positive constants r and ρ, and $X(t)$ is given by

$$
X(t)=\left(c_{1} t_{1}^{\eta+2 c_{1} c_{n+1}}, c_{2}, \cdots, c_{n}, c_{n+1} t_{1}^{-\eta-2 c c_{1} c_{n+1}}, c_{n+2}, \cdots, c_{2 n}\right),
$$

$c_{1}, \cdots, c_{2 n}$ being arbitrary constants.

References

[1] A. D. Brjuno: Analytic form of differential equations. Trans. Moscow Math. Soc., 25, 131-288 (1971) ; 26, 199-239 (1972).
[2] R. Gérard and T. Tahara: Maillet's type theorems for non linear singular partial differential equations (to appear in J. Math. Pures Appl.).
[3] M. Iwano: On a singular point of Briot-Bouquet type of a system of ordinary differential equations. Comment. Math. Univ. St. Paul., 11, 37-78 (1963).
[4] H. Kimura: The construction of a general solution of a Hamiltonian system with regular type singularity and its application to Painlevé equations. Annali di mat. pura ed appli., 134, 363-392 (1983).
[5] --: Symmetries of the Garnier system and of the associated polynomial Hamiltonian system. Proc. Japan Acad., 66A, 176-178 (1990).
[6] H. Kimura and K. Okamoto: On the polynomial Hamiltonian structure of the Garnier system. J. Math. Pures Appl., 63, 129-142 (1984).
[7] K. Okamoto: Isomonodromic deformation and Painlevé equations, and the Garnier system. J. Fac. Sci. Univ. Tokyo, Sec. IA, 33, 575-618 (1986).
[8] S. Shimomura: Series expansions of Painlevé transcendents in the neighbourhood of a fixed singular points. Funkc. Ekvac., 25, 363-371 (1982).
[9] K. Takano: A 2-parameter family of solutions of Painlevé equation (V) near point at infinity. ibid., 26, 79-113 (1983).
[10] --: Reduction for Painleve equations at the fixed singular point of the first kind. ibid., 29, 99-119 (1987).
[11] S. Yoshida: A general solution of a nonlinear 2-system without Poincaré's condition of at an irregular singular point. ibid., 27, 367-391 (1984).

[^0]: *) Department of Mathematics, College of Arts and Sciences, University of Tokyo. **) Department of Mathematics, Faculty of Sciences, Kobe University.

