73. A Note on Exponents of K-groups of Rings of Algebraic Integers

By Masanari Kida*)
Department of Mathematics, School of Science and Engineering, Waseda University
(Communicated by Shokichi Iyanaga, m. J. a., Oct. 14, 1991)

1. In this note, we construct higher K-groups of rings of algebraic integers with arbitrary large l-exponent using the technique developed by K. Komatsu in his papers [4] [5].

Let l be an odd prime number. For an algebraic number field F, by which we always mean an algebraic extension over the field of rational numbers \boldsymbol{Q} of finite degree, we denote by \mathcal{O}_{F} the ring of algebraic integers of F, by F_{∞} the cyclotomic Z_{l}-extension of F, by F_{m} its m-th layer i.e., the unique cyclic extension of F contained in F_{∞} of degree l^{m}. For an abelian torsion group X and a positive integer n, define $X_{n}=\left\{x \in X \mid l^{n} x=0\right\}$ and $X_{\infty}=\cup_{n=1}^{\infty} X_{n}$. We also define the l-exponent of the group X to be $\exp (X)$ $=\max \left\{l^{n} \mid X_{n} \neq 0\right\}$. Let μ be the group of roots of unity. And we choose a generator ζ_{n} of each μ_{n} with $\zeta_{n+1}^{l}=\zeta_{n}$. For each odd integer ν, let $K_{2 \nu}\left(\mathcal{O}_{F}\right)$ be the Quillen's 2ν-th K-group. According to Quillen [6], $K_{2 \nu}\left(\mathcal{O}_{F}\right)$ is an abelian group of finite order.

Let k be a totally real algebraic number field. For a while, we fix a non-negative integer n_{0} and put

$$
\begin{aligned}
& k^{\left(n_{0}\right)}=k \cdot \boldsymbol{Q}_{n_{0}-1}, \quad K^{\left(n_{0}\right)}=k^{\left(n_{0}\right)}\left(\mu_{1}\right), \quad G_{\infty}^{\left(n_{0}\right)}=\operatorname{Gal}\left(K_{\infty}^{\left(n_{0}\right)} / k^{\left(n_{0}\right)}\right), \\
& \Gamma^{\left(n_{0}\right)}=\operatorname{Gal}\left(K_{\infty}^{\left(n_{0}\right)} / K^{\left(n_{0}\right)}\right), \quad \text { and } \quad L^{\left(n_{0}\right)}=\operatorname{Gal}\left(K_{\infty}^{\left(n_{0}\right)} / k_{\infty}^{\left(n_{0}\right)}\right) .
\end{aligned}
$$

Let $\chi: \Delta^{\left(n_{0}\right)} \rightarrow \boldsymbol{Z}_{\imath}^{\times}$be the Teichmüller character i.e., a homomorphism such that $\zeta_{1}^{\delta}=\zeta_{1}^{\chi(\delta)}$ for all $\delta \in \Delta^{\left(n_{0}\right)}$ and

$$
\varepsilon_{i}=\left(\#\left(\Delta^{\left(n_{0}\right)}\right)\right)^{-1} \sum_{\delta \in \Delta^{\left(n_{0}\right)}} \chi(\delta)^{i} \delta^{-1} \in Z_{l}\left[\Delta^{\left(n_{0}\right)}\right]
$$

the canonical orthogonal idempotent for each integer i. We choose a topological generator γ of $\Gamma^{\left(n_{0}\right)}$ and define an l-adic integer κ by $\zeta_{m}^{\gamma}=\zeta_{m}^{k}(m \geq 1)$. Let $\mathscr{I}=\lim _{\rightarrow k} \mu_{k}$ be the Tate module, which is a free Z_{l}-module of rank 1 and on which $G_{\infty}^{\left(n_{0}\right)}$ acts in a natural way. If X is a $G_{\infty}^{\left(n_{0}\right)}$-module, which is also a Z_{l}-module, we define, for each integer $n \geq 0$,

$$
X(n)=X \otimes_{Z_{l}} \mathscr{I} \otimes_{Z_{l}} \cdots \otimes_{Z_{l}} \mathscr{I} \quad(n \text { times })
$$

endowed with diagonal action of $G_{\infty}^{\left(n_{0}\right)}$. We denote, as usual, by $X^{G_{\infty}^{(n)}}$ the $G_{\infty}^{\left(n_{0}\right)}$-invariant submodule of X.

We shall prove a preliminary lemma.
Lemma 1. Let X be an l-primary $G_{\infty}^{\left(n_{0}\right)}$-module and n a non-negative

[^0]integer. Then the natural isomorphism of abelian groups φ of X onto $X(n)$, which is defined by
$$
\varphi(x)=x \otimes 1 \otimes \cdots \otimes 1
$$
for each element x of X, induces $\Gamma^{\left(n_{0}\right)}$-isomorphism on X_{t} for $t=1,2, \cdots, n_{0}$.
Proof. For any element x of X_{t}, we have
\[

$$
\begin{aligned}
\varphi(x)^{r} & =x^{r} \otimes 1^{r} \otimes \cdots \otimes 1^{r}=x^{r} \otimes \kappa \otimes \cdots \otimes \kappa \\
& =\left(\kappa^{n} x^{r}\right) \otimes 1 \otimes \cdots \otimes 1=x^{r} \otimes 1 \otimes \cdots \otimes 1=\varphi\left(x^{r}\right),
\end{aligned}
$$
\]

because $\kappa \equiv 1\left(\bmod l^{n_{0}}\right)$ by the definition of κ. This is the claim of the lemma.

We can easily observe that

$$
\left(X^{\Gamma\left(n_{0}\right)}\right)_{t}=X^{\Gamma\left(n_{0}\right)} \cap X_{t}, \quad\left((X(n))^{\Gamma\left(n_{0}\right)}\right)_{t}=(X(n))^{\Gamma\left(n_{0}\right)} \cap \varphi\left(X_{t}\right) .
$$

Hence we obtain the following $\Gamma^{\left(n_{0}\right)}$-isomorphism by Lemma 1.

$$
\begin{equation*}
\left(X^{\Gamma\left(n_{0}\right)}\right)_{t} \simeq\left(X(n)^{\Gamma\left(n_{0}\right)}\right)_{t} \quad \text { for } t=1, \cdots, n_{0} . \tag{1}
\end{equation*}
$$

Let $C_{m}^{\left(n_{0}\right)}$ (resp. $C_{\infty}^{\left(n_{0}\right)}$) be the l-primary part of the ideal class group of $K_{m}^{\left(n_{0}\right)}$ (resp. $K_{\infty}^{\left(n_{0}\right)}$, which is defined by $\lim _{\rightarrow m} C_{m}^{\left(n_{0}\right)}$, where limit is taken with respect to the natural map induced by the lifting of ideals). From (1) we obtain

$$
\begin{equation*}
\left(\left(\varepsilon_{-\nu} C_{\infty}^{\left(n_{0}\right)}(\nu)\right)^{\Gamma\left(n_{0}\right)}\right)_{t} \simeq\left(\left(\varepsilon_{-\nu} C_{\infty}^{\left(n_{0}\right)}\right)^{\Gamma\left(n_{0}\right)}\right)_{t} \quad \text { for } t=1, \cdots, n_{0} . \tag{2}
\end{equation*}
$$

By a well-known property of cyclotomic Z_{l}-extensions (cf. [7], Proposition 13.26.), we have the following injections.

$$
\begin{align*}
& \varepsilon_{-\nu} V_{0}^{\left(n_{0}\right)} \rightarrow\left(\varepsilon_{-\nu} V_{\infty}^{\left(n_{0}\right)}\right)^{\Gamma\left(n_{0}\right)} . \tag{3}\\
& \varepsilon_{-\nu} C_{0}^{(0)} \rightarrow \varepsilon_{-\nu} C_{0}^{\left(n_{0}\right)} . \tag{4}
\end{align*}
$$

Combining (2), (3) and (4), we have an injection

$$
\begin{equation*}
\left(\varepsilon_{-\nu} C_{0}^{(0)}\right)_{t} \rightarrow\left(\left(\varepsilon_{-\nu} C_{\infty}^{\left(n_{0}\right)}(\nu)\right)^{\Gamma\left(n_{0}\right)}\right)_{t} \quad \text { for } t=1, \cdots, n_{0} . \tag{5}
\end{equation*}
$$

On the other hand, by Soulé's theorem (cf. [1], p. 286), for an odd positive integer ν, there is a canonical surjective homomorphism

$$
\begin{equation*}
K_{2 \nu}\left(\mathcal{O}_{k^{\left(n_{0}\right)}}\right)_{\infty} \rightarrow\left(C_{\infty}^{\left(n_{0}\right)}(\nu)\right)^{G_{\infty}^{\left(n_{0}\right)}}=\left(C_{\infty}^{\left(n_{0}\right)}(\nu)^{\Delta\left(n_{0}\right)}\right)^{\Gamma^{\left(n_{0}\right)}}=\left(\varepsilon_{-\nu} C_{\infty}^{\left(n_{0}\right)}(\nu)\right)^{\Gamma^{\left(n_{0}\right)}} . \tag{6}
\end{equation*}
$$

By (6), we have

$$
\begin{equation*}
\exp \left(\varepsilon_{-\nu}\left(C_{\infty}^{\left(n_{0}\right)}(\nu)\right)^{r^{\left(n_{0}\right)}}\right) \leq \exp \left(K_{2 \nu}\left(\mathcal{O}_{k^{\left(n_{0}\right)}}\right)_{\infty}\right) . \tag{7}
\end{equation*}
$$

2. Notations as in the previous section. We construct K-groups with arbitrary large l-exponent using the results obtained in the previous section. More precisely, for a given natural integer m, we construct K-groups with l-exponent larger than l^{m}.

Let k be a totally real field. Assume that the Iwasawa μ-invariant of $K=k\left(\mu_{1}\right)$ is zero. (For example, if we assume that k is an abelian over the rationals, this is always valid by the theorem of B. Ferrero and L. C. Washington ([7] § 7.5).) Take an l-extension k^{\prime} of k with [$\left.k^{\prime}\left(\mu_{1}\right)_{\infty,+}: k\left(\mu_{1}\right)_{\infty,+}\right]$ $=l^{e}$ where " + " stands for the maximal totally real subfield. Let $\lambda_{\varepsilon_{-\nu}}$ (resp. $\lambda_{\varepsilon-\nu}^{\prime}$) be the Iwasawa λ-invariant associated with the group $\varepsilon_{-\nu} C_{\infty}^{(0)}$ (resp. ($\left.\varepsilon_{-\nu} \mathcal{C}_{\infty}^{(0)}\right)^{\prime}$, the corresponding object for k^{\prime}). In his paper [5] (Lemma 5), K. Komatsu showed a "piece-by-piece" version of the Riemann-Hurwitz formula of Y. Kida [3]. These are as follows.
(8) $\quad \lambda_{c_{i}}^{\prime}+s^{\prime}-1=l^{e}\left(\lambda_{s_{i}}+s-1\right)$, for the odd integer $i\left(i \equiv 1\left(\bmod \#\left(\Delta^{\left(n_{0}\right)}\right)\right)\right)$,
(9) $\quad \lambda_{s_{i}}^{\prime}+s^{\prime}=l^{e}\left(\lambda_{\varepsilon_{i}}+s\right) \quad$ for the odd integer $i\left(i \not \equiv 1\left(\bmod \#\left(\Delta^{\left(n_{0}\right)}\right)\right)\right)$, where s (resp. s^{\prime}) is the number of prime ideals of k_{∞} (resp. k_{∞}^{\prime}) which is lying above the set S of tamely ramified prime ideals of k with respect to the extension k^{\prime} / k.

If we assume that the set S contains at least two elements, then we have $\lambda_{\varepsilon-\nu}^{\prime}>0$ by (8) and (9). Moreover the μ-invariant for $k^{\prime}\left(\mu_{1}\right)$ is also zero by the theorem of Iwasawa [2]. Hence replacing k by k^{\prime}, we may assume $\lambda_{\varepsilon_{-\nu}}>0$. Therefore the order of $\varepsilon_{-\nu} C_{n}^{(0)}$ is unbounded as n goes to infinity. But its rank is bounded because $\mu=0$. Hence its l-exponent is unbounded. Now choose n_{0} so that it is larger than m. By taking sufficiently large n and replacing $K_{0}^{(0)}=k\left(\mu_{1}\right)$ by the n-th layer of its cyclotomic Z_{l}-extension, we have

$$
\left(\varepsilon_{-\nu} C_{0}^{(0)}\right)_{t} \neq 0 \quad \text { for } t=1, \cdots, n_{0} .
$$

Then it follows from (5) that

$$
\left(\left(\varepsilon_{-\nu} C_{\infty}^{\left(n_{0}\right)}(\nu)\right)^{\Gamma\left(n_{0}\right)}\right)_{t} \neq 0 \quad \text { for } t=1, \cdots, n_{0}
$$

By (7), we finally obtain

$$
\exp \left(K_{2 \nu}\left(\mathcal{O}_{k^{\left(n_{0}\right)}}\right)_{\infty}\right) \geq \exp \left(\varepsilon_{-\nu}\left(C_{\infty}^{\left(n_{0}\right)}(\nu)\right)^{\left.\Gamma^{\left(n_{0}\right)}\right)} \geq l^{n_{0}} \geq l^{m}\right.
$$

as desired.
Remark. In the above construction, we assumed $\# S \geq 2$. We explain that we can have this condition easily satisfied. We choose distinct prime numbers $p_{i}(i=1,2)$ such that $p_{i} \equiv 1(\bmod l)$ and that $\left(p_{i}, D_{k}\right)=1$, where D_{k} is the absolute discriminant of k. Let k_{i} be the unique cyclic extension of degree l over \boldsymbol{Q} in the p_{i}-th cyclotomic field for each $i=1,2$, and we put $\operatorname{Gal}\left(k_{1} \cdot k_{2} / k_{i}\right)=\left\langle\sigma_{i}\right\rangle$. Let \tilde{k} be the subfield of $k_{1} \cdot k_{2}$ fixed by $\sigma_{1} \cdot \sigma_{2}$. Put $k^{\prime}=\tilde{k} \cdot k$. Then it is easy to see that $\left[k^{\prime}: k\right]=\left[k^{\prime}\left(\mu_{1}\right)_{\infty,+}: k\left(\mu_{1}\right)_{\infty,+}\right]=l$ and that $p_{1}, p_{2} \in S$. Hence the field k^{\prime} satisfies the condition.

Acknowledgment. The author would like to express his thanks to Professor K. Komatsu for his valuable advice and warm encouragement.

References

[1] Coates, J.: The work of Mazur and Wiles on cyclotomic fields. Sém. Bourbaki, 1980/81, Exp. no. 575, Springer, Lect. Notes in Math., vol. 901, pp. 220-242 (1981).
[2] Iwasawa, K.: On the μ-invariants of \boldsymbol{Z}_{l}-extensions. Number Theory, Algebraic Geometry and Commutative Algebra (in honor of Y. Akizuki). Kinokuniya, Tokyo, pp. 1-11 (1973).
[3] Kida, Y.: l-extensions of $C M$-fields and cyclotomic invariants. J. Number Theory, 12, 519-528 (1980).
[4] Komatsu, K.: K-groups and λ-invariants of algebraic number fields. Tokyo J. Math., 11, 241-246 (1988).
[5] ——: K-groups and ideal class groups of number fields. Manuscripta Math., 72, 155-161 (1991).
[6] Quillen, D.: Finite generation of the groups K_{i} of rings of algebraic integers. Algebraic K-theory. I. Springer, Lect. Notes in Math., vol. 341, pp. 179-198 (1973).
[7] Washington, L. C.: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics, no. 83. Springer-Verlag, New York, Heidelberg, Berlin (1982).

[^0]: *) Present address: Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland 21218 U.S.A.

