70. On a Conjecture of Gackstatter and Laine on Some Differential Equations

By Katsuya Ishizaki
Department of Mathematics, Tokyo National College of Technology

(Communicated by Shokichi Iyanaga, m. J. A., Oct. 14, 1991)

1. Introduction. In this paper, we consider the differential equation

$$
\begin{equation*}
P\left(z, w^{\prime}\right)=Q(z, w) \tag{1.1}
\end{equation*}
$$ in the complex plane, where $P\left(z, w^{\prime}\right)$ and $Q(z, w)$ are polynomials of w^{\prime} and w with meromorphic (maybe transcendental) coefficients, respectively :

$$
\left\{\begin{array}{l}
P\left(z, w^{\prime}\right)=w^{\prime p}+b_{p-1}(z) w^{\prime p-1}+\cdots+b_{1}(z) w^{\prime} \\
Q(z, w)=a_{q}(z) w^{q}+a_{q-1}(z) w^{q-1}+\cdots+a_{0}(z), a_{q}(z) \not \equiv 0 .
\end{array}\right.
$$

We use standard notations in Nevanlinna theory [2][5]. Let $f(z)$ be a meromorphic function. As usual, $m(r, f), N(r, f)$ and $T(r, f)$ denote the proximity function, the counting function, and the characteristic function of $f(z)$, respectively.

A function $\varphi(r), 0 \leq r<\infty$, is said to be $S(r, f)$ if there is a set $E \subset \mathbf{R}^{+}$ of finite linear measure such that $\varphi(r)=o(T(r, f))$ as $r \rightarrow \infty, r \notin E$. A meromorphic function $a(z)$ is small with respect to $f(z)$, if $T(r, a)=S(r, f)$.

Let $\Omega\left(z, w, w^{\prime}, \cdots, w^{(n)}\right)$ be a differential polynomial of w with meromorphic coefficients and \mathscr{M} be the set of its coefficients. We call a transcendental meromorphic solution $w(z)$ of the differential equation $\Omega\left(z, w, w^{\prime}\right.$, $\left.\cdots, w^{(n)}\right)=0$ is an admissible solution, if $T(r, a)=S(r, w)$ for any $a(z) \in \mathcal{M}$.

Gackstatter and Laine [1] investigated the binomial equation

$$
\begin{equation*}
\left(w^{\prime}\right)^{p}=Q(z, w) \quad\left(b_{p-1}=\cdots=b_{1} \equiv 0 \text { in }\left(1.1^{\prime}\right)\right) \tag{1.2}
\end{equation*}
$$

and they conjectured that it would not possess any admissible solution if $1 \leqq q \leqq p-1$. Some investigations have been done for this conjecture, e.g. [6][8] [9][10].

In [6], Ozawa pointed out that this conjecture is closely connected with a problem due to Hayman ([3] Problem 1.21). If (1.1) possesses an admissible solution $w(z)$, then from (1.1) and (1.1').

$$
\begin{equation*}
p T\left(r, w^{\prime}\right)=q T(r, w)+S(r, w) \tag{1.3}
\end{equation*}
$$

Thus $T(r, w) / T\left(\left(r, w^{\prime}\right) \rightarrow p / q>1\right.$ for $r \rightarrow \infty$ outside a set E of finite linear measure.

Recently, He and Laine [4] solved this conjecture affirmatively.
Theorem A. When $1 \leqq q \leqq p-1$ in (1.2), the differential equation (1.2) possesses no admissible solution.

Toda [9] treated more general differential equation

$$
\begin{equation*}
H\left(z, w, w^{\prime}, \cdots, w^{(k)}\right)^{m}=Q(z, w) \tag{1.4}
\end{equation*}
$$

where $H\left(z, w, w^{\prime}, \cdots, w^{(k)}\right)$ is a differential polynomial of w. He proved the following theorem.

Theorem B. When $0 \leqq q \leqq m-1$ in (1.4), the differential equation (1.4) has no admissible solution unless it is of the following form :

$$
\begin{equation*}
H\left(z, w, w^{\prime}, \cdots, w^{(k)}\right)^{m}=a_{q}(z)(w+\alpha(z))^{q}, \quad a_{q}(z) \neq 0 . \tag{1.5}
\end{equation*}
$$

In this paper, we will show that Theorem A can be generalized for the equation (1.1) in place of (1.2).

Theorem 1. When $1 \leqq q \leqq p-1$ in (1.1), the differential equation (1.1) possesses no admissible solution.
2. Preliminary lemmas. We consider the equation (1.1). In the below, \mathscr{M} denotes the set of the coefficients of (1.1). Let $w(z)$ be an admissible solution of (1.1) (if exists). For $c \in C \cup\{\infty\}, z_{0}$ is an admissible c-poirt of $w(z)$, if $w\left(z_{0}\right)=c$ and if z_{0} is neither zero nor pole of any functions which belong to \mathcal{M}.

Lemma 1. Suppose the differential equation (1.1) possesses an admissible solution $w(z)$ for $1 \leqq q \leqq p-1$. Then

$$
\begin{equation*}
N(r, w)=S(r, w), \quad N\left(r, w^{\prime}\right)=S(r, w) \tag{2.1}
\end{equation*}
$$

Proof of Lemma 1. Suppose there exists an admissible pole z_{0} of $w(z)$ and let μ be its order. From (1.1), $(\mu+1) p=\mu q$, which contradicts to the condition $1 \leqq q \leqq p-1$. Hence (2.1) holds.

For the estimations of the proximity functions of some rationals of w and w^{\prime}, we state the following lemma.

Lemma 2. Let $\tau_{j}(j=1,2, \cdots, s)$ be complex constants such that $m\left(r, \tau_{j} ; w\right)=S(r, w)$. Then, for $p \leqq s$

$$
m\left(r, \frac{\left(w^{\prime}\right)^{p}}{\prod_{j=1}^{s}\left(w-\tau_{j}\right)}\right)=S(r, w)
$$

The proof of Lemma 2 is easily obtained by the theorem on the logarithmic derivatives (see, [5] p. 245).

Lemma 3. The differential equation (1.1) possesses no admissible solution for $p=2$ and $q=1$.

For the proof of Lemma 3, we give a remark.
Remark 1. Let $\eta(z)$ be a rational of members of \mathscr{M} and their derivatives. Then we have $T(r, \eta) \leq K \sum_{a_{\nu} \in \mathscr{M}} T\left(r, a_{\nu}\right)+S(r, w)$, for some $K>0$. Thus $\eta(z)$ is a small function with respect to $w(z)$. We denote $n_{\eta}^{*}(r, c ; w)$, the number of c-point z_{0} of $w(z)$ in $|z| \leqq r$ so that z_{0} satisfies $\eta\left(z_{0}\right)=0$. $N_{\eta}^{*}(r, c ; w)$ is defined in the usual way. Assume that $N(r, c ; w) \neq S(r, w)$, for some $c \in C \cup\{\infty\}$, then there exists an admissible c-point of $w(z)$. Since $\eta(z)$ is small with respect to $w(z)$, there exists an admissible c-point of $w(z)$, which is neither zero nor pole of $\eta(z)$. Hence, if $N_{\eta}^{*}(r, c ; w) \neq S(r, w)$, then $\eta(z) \equiv 0$.

Proof of Lemma 3. Suppose (1.1) possesses an admissible solution $w(z)$ for $p=2$ and $q=1$. Put $u=w+a_{0}(z) / a_{1}(z)+b_{1}(z)^{2} / 4 a_{1}(z)$, then
(2.2) $\quad\left(u^{\prime}+\beta(z)\right)^{2}=a_{1}(z) u$,
where $\beta(z)=b_{1}(z) / 2-\left(a_{0}(z) / a_{1}(z)+b_{1}(z)^{2} / 4 a_{1}(z)\right)^{\prime}$.
Suppose $N(r, 0 ; u) \neq S(r, u)$. Let z_{0} be an admissible zero of $u(z)$. From (2.2), z_{0} is a multiple zero of $u(z)$. Hence $u^{\prime}\left(z_{0}\right)=0$, which implies
$\beta\left(z_{0}\right)=0$ by (2.2). Thus $N_{\beta}^{*}(r, 0 ; u) \neq S(r, u)$. By Remark $1, \beta(z) \equiv 0$ and by Theorem A, (2.2) has no admissible solution. Therefore $N(r, 0 ; u)=S(r, u)$. Put $\varphi(z)=u^{\prime} / u$, then by Lemma 1

$$
N(r, \varphi(z)) \leqq N(r, u)+N(r, 0, u)=S(r, u)
$$

By the theorem on the logarithmic derivatives, we have $m(r, \varphi)=S(r, u)$. Thus $\varphi(z)$ is a small function, hence $(\varphi(z) u+\beta(z))^{2}=a_{1}(z) u$, which implies $T(r, u)=S(r, u)$. This is a contradiction.
3. Proof of Theorem 1. For the proof of Theorem 1, we will follow Steinmetz's ideas in [7].

Proof of Theorem 1. By Lemma 3, we will prove for the case $p \geqq 3$. Suppose (1.1) possesses an admissible solution $w(z)$.

We consider the following conditions, for a complex constant τ.

$$
\begin{equation*}
m(r, \tau ; w)=S(r, w) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
Q(z, \tau) \not \equiv 0 \tag{3.2}
\end{equation*}
$$

We have a plenty of such τ 's as seen by the second fundamental theorem.

Put

$$
F\left(z ; \tau_{j}\right)=\left(P\left(z, w^{\prime}\right)-Q\left(z, \tau_{j}\right)\right) /\left(w-\tau_{j}\right),
$$

where $\tau_{j}(j=1,2, \cdots, p)$ are arbitrarily given distinct complex constants satisfying the conditions (3.1) and (3.2). Then by Lemma 1

$$
\begin{equation*}
N\left(r, F\left(z ; \tau_{j}\right)\right)=S(r, w) \quad j=1,2, \cdots, p \tag{3.3}
\end{equation*}
$$

We consider a linear combinations $h(z)=\sum_{j=1}^{p} A_{j} F\left(z ; \tau_{j}\right), A_{j}$ constants :

$$
\begin{equation*}
h(z)=P\left(z, w^{\prime}\right) \sum_{j=1}^{p} \frac{A_{j}}{w-\tau_{j}}-\sum_{j=1}^{p} \frac{A_{j} Q\left(z, \tau_{j}\right)}{w-\tau_{j}} \tag{3.4}
\end{equation*}
$$

From (3.3) we have $N(r, h)=S(s, w)$. By the condition (3.1), the proximity function of the second term of the right-hand side of (3.4) is $S(r, w)$. We choose complex constants A_{1}, \cdots, A_{p} so that

$$
\begin{equation*}
\sum_{j=1}^{p} \frac{A_{j}}{w-\tau_{j}}=\frac{A}{\prod_{j=1}^{p}\left(w-\tau_{j}\right)}, \tag{3.5}
\end{equation*}
$$

where A is a non-zero constant. In fact, this choice is regarded as a nontrivial solution of the system

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\sigma_{1}^{(1)} & \sigma_{2}^{(1)} & \cdots & \sigma_{p}^{(1)} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1}^{(p-2)} & \sigma_{2}^{(p-2)} & \cdots & \sigma_{p}^{(p-2)}
\end{array}\right)\left(\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
\vdots \\
A_{p}
\end{array}\right)=0
$$

where $\sigma_{n}^{(m)}$ is a fundamental symmetric expression of $\tau_{j}(1 \leqq j \leqq p, j \neq n)$ of degree m. By (3.5) and Lemma 2, the proximity function of the first term of (3 4) is also $S(r, w)$. Thus we obtain $m(r, h)=S(r, w)$. Hence $h(z)$ is a small function with respect to $w(z)$.

First we treat the case $h(z) \not \equiv 0$. From (3.5)

$$
\begin{equation*}
A P\left(z, w^{\prime}\right)=h(z) \prod_{j=1}^{p}\left(w-\tau_{j}\right)+\sum_{j=1}^{p} A_{j} Q\left(z, \tau_{j}\right) \prod_{\nu \neq j}\left(w-\tau_{\nu}\right) \tag{3.6}
\end{equation*}
$$

From (3.6), $T\left(r, w^{\prime}\right)=T(r, w)+S(r, w)$. Thus, by (1.3), $T(r, w)=S(r, w)$, which is a contradiction.

It remains to consider the case $h(z) \equiv 0$. From (3.5)

$$
\begin{equation*}
P\left(z, w^{\prime}\right)=\frac{1}{A} \sum_{j=1}^{p} A_{j} Q\left(z, \tau_{j}\right) \prod_{\nu \neq j}\left(w-\tau_{\nu}\right) \tag{3.7}
\end{equation*}
$$

From (3.7) and (1.1), the right-hand side of (3.7) is identically equal to $Q(z, w)$, otherwise we have $T(r, w)=S(r, w)$. Comparing the coefficients of w^{q}, we obtain the following equation

$$
\begin{equation*}
t_{1}(z) A_{1}+t_{2}(z) A_{2}+\cdots+t_{p}(z) A_{p}=0 \tag{3.8}
\end{equation*}
$$

where $t_{j}(z)=Q\left(z, \tau_{j}\right)-(-1)^{p-1} a_{p-1}(z) \Pi_{\nu \neq j} \tau_{\nu}$ and $a_{m}(z)=0$, if $m \geqq q$. Since $p \geqq 3$ and $\alpha_{q}(z) \not \equiv 0$, we choose $\tau_{j}(j=1,2, \cdots, p)$ so that

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\sigma_{1}^{(1)} & \sigma_{2}^{(1)} & \cdots & \sigma_{p}^{(1)} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1}^{(p-2)} & \sigma_{2}^{(p-2)} & \cdots & \sigma_{p}^{(p-2)} \\
t_{1}(z) & t_{2}(z) & \cdots & t_{p}(z)
\end{array}\right) \not \equiv 0 .
$$

Thus $\mathrm{A}_{j}=0$ for all $j=1,2, \cdots, p$, which contradicts our assumption. Hence Theorem 1 is proved.

References

[1] F. Gackstatter and I. Laine: Zur Theorie der gewöhnlichen Differentialgleichungen im Komplexen. Ann, Polon. Math., 38, 259-287 (1980).
[2] W. K. Hayman: Meromorphic Functions. Oxford University Press (1964).
[3] -: Research Problems in Function Theory. Athlone Press (1967).
[4] Y. He and I. Laine: The Hayman-Miles theorem and the differential equation $\left(y^{\prime}\right)^{n}=R(z, y)$. Analysis, 10, 387-396 (1990).
[5] R. Nevanlinna: Analytic Functions. Springer-Verlag, Berlin, Heidelberg, New York (1970).
[6] M. Ozawa: On a conjecture of Gackstatter and Laine. Kodai Math. J., 6, 80-87 (1983).
[7] N. Steinmetz: Meromorphic solutions of second-order algebraic differential equations. Complex Variables, 13, 75-83 (1989).
[8] N. Toda: On the conjecture of Gackstatter and Laine concerning the differential equation $\left(w^{\prime}\right)^{n}=\sum_{j=0}^{m} a_{j}(z) w^{j}$. Kodai Math. J., 6, 238-249 (1983).
[9] --: On the growth of meromorphic solutions of some higher order differential equations. J. Math. Soc. Japan, 38, 439-451 (1986).
[10] --: On the growth of meromorphic solutions of some algebraic differential equations. Tôhoku Math. J., 38, 599-608 (1986).

