69. A New One-parameter Family of 2×2 Quantum Matrices

By Mitsuhiro TAKEUCHI*) and Daisuke TAMBARA**)

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 14, 1991)

We introduce a new one-parameter family of quadratic braided 2×2 matrix bialgebras $B_q(2)$. We work over the complex numbers C. All proofs of this announcement will be included in [5]. The main results were also announced at the AMS San Fransisco meeting in January 1991.

We start with the following R-matrix. Let q be a complex number.

$$egin{aligned} R_q =& igg[1 - rac{(q-1)^2}{2} igg] e_{_{11}} \otimes e_{_{11}} + igg[1 - rac{(q+1)^2}{2} igg] e_{_{22}} \otimes e_{_{22}} \ &+ rac{(q-1)^2}{2} e_{_{12}} \otimes e_{_{12}} + rac{(q+1)^2}{2} e_{_{21}} \otimes e_{_{21}} \ &+ rac{1 - q^2}{2} (e_{_{11}} \otimes e_{_{22}} + e_{_{22}} \otimes e_{_{11}}) + rac{1 + q^2}{2} (e_{_{12}} \otimes e_{_{21}} + e_{_{21}} \otimes e_{_{12}}) \end{aligned}$$

where e_{ij} denote the matrix units. A tedious verification shows that R_q satisfies the Yang-Baxter equation (or the braid condition)

 $(I \otimes R_q)(R_q \otimes I)(I \otimes R_q) = (R_q \otimes I)(I \otimes R_q)(R_q \otimes I).$ Further we have $(R_q - I)(R_q + q^2I) = 0$ and when $q \neq 0$, $q^2 \neq -1$, R_q is diagonal with two two-dimensional eigenspaces.

Definition 1. Assume $q \neq 0$, $q^2 \neq -1$. Let $B_q(2)$ be the *C*-algebra defined by generators a, b, c, d and the following relations

(1) ad = da, (2) bc = cb, (3) $ab - \hat{q}ba = (1 - \hat{q})cd$,

(4) $dc + \hat{q}cd = (1 + \hat{q})ba$, (5) $ac - \hat{q}ca = -(1 + \hat{q})bd$,

(6) $db + \hat{q}bd = -(1-\hat{q})ca$, (7) $a^2 + b^2 = c^2 + d^2$,

(8) $(1+\hat{q})b^2 = (\hat{q}-1)c^2$,

where $\hat{q} = \frac{q+q^{-1}}{2}$.

The above relations are equivalent to saying that the matrix $X \otimes X$ with $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, commutes with R_q . Hence the algebra $B_q(2)$ has a bialgebra structure with comultiplication

$$\varDelta \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a \otimes 1 & b \otimes 1 \\ c \otimes 1 & d \otimes 1 \end{pmatrix} \begin{pmatrix} 1 \otimes a & 1 \otimes b \\ 1 \otimes c & 1 \otimes d \end{pmatrix}.$$

The bialgebra $B_q(2)$ is braided by [2] or [1].

Proposition 2. Assume $q \neq 0$, $q^4 \neq 1$. Let

$$f = \frac{1}{2}(a+d), \quad g = \frac{1}{2}(a-d), \quad s = \frac{1}{2}(q_{-}b+q_{+}c), \quad t = \frac{1}{2}(q_{-}b-q_{+}c)$$

where $q_{\pm} = (\sqrt{q} \pm \sqrt{q}^{-1})^{-1}$.

*) University of Tsukuba.

**) Hirosaki University.

(a) The algebra $B_q(2)$ is presented by generators f, g, s, t and the relations

 $fg=gf=s^2+t^2$, st=ts=0, fs=qsg, sf=qgs, tg=qft, gt=qtf. (b) We have

$$\begin{split} & \Delta(f) = f \otimes f + g \otimes g + (q - q^{-1})(s \otimes s - t \otimes t), \\ & \Delta(g) = f \otimes g + g \otimes f + (q - q^{-1})(t \otimes s - s \otimes t), \\ & \Delta(s) = f \otimes s + g \otimes t + s \otimes f - t \otimes g, \\ & \Delta(t) = f \otimes t + g \otimes s + t \otimes f - s \otimes g, \\ & \varepsilon(f) = 1, \quad \varepsilon(g) = \varepsilon(s) = \varepsilon(t) = 0. \end{split}$$

We are interested in representations and co-representations of $B_q(2)$. We assume $q \neq 0$ and $q^4 \neq 1$ throughout.

Proposition and Definition 3. For complex numbers ξ , η there is a representation $B_q(2) \rightarrow M_2(C)$ such that

$$\begin{split} & f \mapsto \frac{1}{2} \begin{pmatrix} \xi + \sqrt{\eta} & \\ & \xi - \sqrt{\eta} \end{pmatrix}, \quad g \mapsto \frac{q}{2} \begin{pmatrix} \xi - \sqrt{\eta} & \\ & \xi + \sqrt{\eta} \end{pmatrix} \\ & s \mapsto 0, \quad t \mapsto \frac{\sqrt{q}}{2} \begin{pmatrix} & \sqrt{\xi^2 - \eta} & \\ & \sqrt{\xi^2 - \eta} \end{pmatrix}. \end{split}$$

Let this representation be $\pi(\xi, \eta)$. Let $\pi'(\xi, \eta) = \pi(\xi, \eta) \circ \iota$ with ι the automorphism of $B_q(2)$, $\iota(f) = g$, $\iota(g) = f$, $\iota(s) = t$, $\iota(t) = s$.

Theorem 4 (cf. [6, Thm. 1]). (a) All irreducible representations of $B_{g}(2)$ have dimension ≤ 2 .

(b) $\pi(\xi,\eta)$ and $\pi'(\xi,\eta)$ with $\xi^2 \neq \eta$, $\eta \neq 0$, give a complete set of representatives for all 2-dimensional irreducible representations of $B_q(2)$.

Let $B_q(2)^\circ$ be the dual bialgebra of $B_q(2)$ [4].

Corollary 5. The coradical of $B_q(2)^\circ$ is the direct sum of copies of C and $M_2(C)^*$.

Definition 6. Let $F_q(\xi, \eta)$ be the subalgebra of $B_q(2)^\circ$ generated by the coefficient space for $\pi(\xi, \eta)$.

Main Theorem 7. Let q, q', ξ be non-zero complex numbers. Assume neither q nor q' is a root of 1.

(a) The bialgebra $F_q(\xi, \xi^2 q'^2)$ is cosemisimple, i.e., it is contained in the coradical of $B_q(2)^\circ$.

(b) The bialgebra map $B_q(2) \rightarrow F_q(\xi, \xi^2 q'^2)^\circ$ corresponding to the inclusion $F_q(\xi, \xi^2 q'^2) \rightarrow B_q(2)^\circ$ is injective.

(c) There is a bialgebra isomorphism

$$B_{q'}(2) \simeq F_{q}(\xi, \xi^2 q'^2)$$

such that the composite

$$B_q(2) \rightarrow F_q(\xi, \xi^2 q'^2)^\circ \simeq B_{q'}(2)^\circ$$

has image $F_{q'}(\xi, \xi^2 q^2)$.

In general, for coalgebras C and C' there is 1–1 correspondence among

- (1) a linear map $\phi: C \rightarrow C^{\prime*}$,
- (2) a linear map $\phi': C' \rightarrow C^*$,
- (3) a bialgebra map $\psi: T(C) \rightarrow T(C')^{\circ}$,
- (4) a bialgebra map $\psi': T(C') \rightarrow T(C)^{\circ}$,

(5) a bialgebra pairing $\chi: T(C) \times T(C') \rightarrow C$.

Let $C = C' = M_2(C)^*$ with canonical base x_{ij} , $1 \le i, j \le 2$, and let q, q', ξ as before. Take as ϕ of (1) the following map $\phi_{\varepsilon}(q, q')$:

$$\begin{aligned} x_{11} &\mapsto \frac{\hat{\xi}}{2} \begin{pmatrix} 1+q+q'-qq' & & \\ 1+q-q'+qq' \end{pmatrix}, \\ x_{12} &\mapsto \frac{\hat{\xi}}{2} \begin{pmatrix} & -(1-q)(1+q') \\ -(1-q)(1-q') \end{pmatrix}, \\ x_{21} &\mapsto \frac{\hat{\xi}}{2} \begin{pmatrix} & -(1+q)(1-q') \\ -(1+q)(1+q') \end{pmatrix}, \\ x_{22} &\mapsto \frac{\hat{\xi}}{2} \begin{pmatrix} 1-q+q'+qq' & \\ 1-q-q'-qq' \end{pmatrix}. \end{aligned}$$

Then we have

- (i) $\phi' = \phi_{\xi}(q', q)$,

It follows that ψ and ψ' induce bialgebra maps

$$B_a(2) \rightarrow F_{a'}(\xi, \xi^2 q^2)$$
 and $B_{a'}(2) \rightarrow F_a(\xi, \xi^2 q'^2)$.

Theorem 7 (c) means these are isomorphisms.

Corollary 8. (a) If $q \ (\neq 0)$ is not a root of 1, $B_q(2)$ is co-semisimple. It is the direct sum of C and copies of $M_2(C)^*$.

(b) If $q, q' \in k - \{0\}$ are not roots of 1, there is a non-degenerate bialgebra pairing

 $B_q(2) \times B_{q'}(2) \rightarrow C.$

Let $q (\neq 0)$ be not a root of 1, and let $\hat{q} = \frac{1}{2}(q+q^{-1})$. Let S = C[x, y]/2 $((1-\hat{q})x^2-(1+\hat{q})y^2)$ which is isomorphic to C[x, y]/(xy) by a linear change of generators.

Lemma 9. The map $x \rightarrow x \otimes a + y \otimes c$ and $y \mapsto x \otimes b + y \otimes d$ makes S into a right $B_a(2)$ -comodule algebra.

Let S' be the Manin dual of S [3]. It is a left $B_q(2)$ -comodule algebra. The Koszul complex (ibid.)

$$\cdots \rightarrow S \otimes S_n^{!*} \xrightarrow{\sigma} S \otimes S_{n-1}^{!*} \rightarrow \cdots \rightarrow S \otimes S_0^{!*} \rightarrow C \rightarrow 0$$

consists of right $B_a(2)$ -comodules and comodule maps.

Theorem 10. The Koszul complex is exact. The trivial comodule Cand $\operatorname{Im}(\partial: S_m \otimes S_{n+1}^{*} \to S_{m+1} \otimes S_n^{*})$, $m, n \ge 0$, form a complete set of simple $B_q(2)$ -comodules.

Here, $()_n$ denotes the degree *n* part.

References

- T. Hayashi: Quantum groups and quantum determinants (preprint).
 R. Larson and J. Towber: Two dual classes of bialgebras related to the concepts of "quantum group" and "quantum Lie algebra" (preprint).
 Yu. Manin: Quantum groups and non-commutative geometry. CRM, Univ. de Montréal (1988).
 M. Sweedler: Hopf Algebras. Benjamin, New York (1969).
 M. Takeuchi and D. Tambara: A new one-parameter family of 2×2 matrix bi-algebras (preprint).

- algebras (preprint). [6] N. Jing and M. Ge: Letters in Math. Phys., 21, 193-203 (1991).

No. 8]