69. A New One-parameter Family of $\mathbf{2} \times 2$ Quantum Matrices

By Mitsuhiro Takeuchi*) and Daisuke Tambara**)
(Communicated by Shokichi Iyanaga, m. J. A., Oct. 14, 1991)

We introduce a new one-parameter family of quadratic braided 2×2 matrix bialgebras $B_{q}(2)$. We work over the complex numbers C. All proofs of this announcement will be included in [5]. The main results were also announced at the AMS San Fransisco meeting in January 1991.

We start with the following R-matrix. Let q be a complex number.

$$
\begin{aligned}
R_{q}= & {\left[1-\frac{(q-1)^{2}}{2}\right] e_{11} \otimes e_{11}+\left[1-\frac{(q+1)^{2}}{2}\right] e_{22} \otimes e_{22} } \\
& +\frac{(q-1)^{2}}{2} e_{12} \otimes e_{12}+\frac{(q+1)^{2}}{2} e_{21} \otimes e_{21} \\
& +\frac{1-q^{2}}{2}\left(e_{11} \otimes e_{22}+e_{22} \otimes e_{11}\right)+\frac{1+q^{2}}{2}\left(e_{12} \otimes e_{21}+e_{21} \otimes e_{12}\right)
\end{aligned}
$$

where $e_{i j}$ denote the matrix units. A tedious verification shows that R_{q} satisfies the Yang-Baxter equation (or the braid condition)

$$
\left(I \otimes R_{q}\right)\left(R_{q} \otimes I\right)\left(I \otimes R_{q}\right)=\left(R_{q} \otimes I\right)\left(I \otimes R_{q}\right)\left(R_{q} \otimes I\right)
$$

Further we have $\left(R_{q}-I\right)\left(R_{q}+q^{2} I\right)=0$ and when $q \neq 0, q^{2} \neq-1, R_{q}$ is diagonal with two two-dimensional eigenspaces.

Definition 1. Assume $q \neq 0, q^{2} \neq-1$. Let $B_{q}(2)$ be the C-algebra defined by generators a, b, c, d and the following relations
(1) $a d=d a$,
(2) $b c=c b$,
(3) $a b-\hat{q} b a=(1-\hat{q}) c d$,
(4) $d c+\hat{q} c d=(1+\hat{q}) b a$,
(5) $a c-\hat{q} c a=-(1+\hat{q}) b d$,
(6) $d b+\hat{q} b d=-(1-\hat{q}) c a$, (7) $a^{2}+b^{2}=c^{2}+d^{2}$,
(8) $(1+\hat{q}) b^{2}=(\hat{q}-1) c^{2}$,
where $\hat{q}=\frac{q+q^{-1}}{2}$.
The above relations are equivalent to saying that the matrix $X \otimes X$ with $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, commutes with R_{q}. Hence the algebra $B_{q}(2)$ has a bialgebra structure with comultiplication

$$
\Delta\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a \otimes 1 & b \otimes 1 \\
c \otimes 1 & d \otimes 1
\end{array}\right)\left(\begin{array}{ll}
1 \otimes a & 1 \otimes b \\
1 \otimes c & 1 \otimes d
\end{array}\right)
$$

The bialgebra $B_{q}(2)$ is braided by [2] or [1].
Proposition 2. Assume $q \neq 0, q^{4} \neq 1$. Let

$$
f=\frac{1}{2}(a+d), \quad g=\frac{1}{2}(a-d), \quad s=\frac{1}{2}\left(q_{-} b+q_{+} c\right), \quad t=\frac{1}{2}\left(q_{-} b-q_{+} c\right)
$$

where $q_{ \pm}=\left(\sqrt{q} \pm \sqrt{q^{-1}}\right)^{-1}$.

[^0](a) The algebra $B_{q}(2)$ is presented by generators f, g, s, t and the relations
$f g=g f=s^{2}+t^{2}, \quad s t=t s=0, \quad f s=q s g, \quad s f=q g s, \quad t g=q f t, \quad g t=q t f$.
(b) We have
\[

$$
\begin{aligned}
& \Delta(f)=f \otimes f+g \otimes g+\left(q-q^{-1}\right)(s \otimes s-t \otimes t), \\
& \Delta(g)=f \otimes g+g \otimes f+\left(q-q^{-1}\right)(t \otimes s-s \otimes t) \\
& \Delta(s)=f \otimes s+g \otimes t+s \otimes f-t \otimes g, \\
& \Delta(t)=f \otimes t+g \otimes s+t \otimes f-s \otimes g \\
& \varepsilon(f)=1, \quad \varepsilon(g)=\varepsilon(s)=\varepsilon(t)=0 .
\end{aligned}
$$
\]

We are interested in representations and co-representations of $B_{q}(2)$. We assume $q \neq 0$ and $q^{4} \neq 1$ throughout.

Proposition and Definition 3. For complex numbers ξ, η there is a representation $B_{q}(2) \rightarrow M_{2}(C)$ such that

$$
\begin{aligned}
& s \mapsto 0, \quad t \mapsto \frac{\sqrt{q}}{2}\left(\sqrt{\xi^{2}-\eta} \sqrt{\sqrt{\xi^{2}-\eta}}\right) .
\end{aligned}
$$

Let this representation be $\pi(\xi, \eta)$. Let $\pi^{\prime}(\xi, \eta)=\pi(\xi, \eta) \circ$ ८ with ८ the automorphism of $B_{q}(2), \iota(f)=g, \iota(g)=f, \iota(s)=t, \iota(t)=s$.

Theorem 4 (cf. [6, Thm. 1]). (a) All irreducible representations of $B_{q}(2)$ have dimension ≤ 2.
(b) $\pi(\xi, \eta)$ and $\pi^{\prime}(\xi, \eta)$ with $\xi^{2} \neq \eta, \eta \neq 0$, give a complete set of representatives for all 2-dimensional irreducible representations of $B_{q}(2)$.

Let $B_{q}(2)^{\circ}$ be the dual bialgebra of $B_{q}(2)$ [4].
Corollary 5. The coradical of $B_{q}(2)^{\circ}$ is the direct sum of copies of C and $M_{2}(\boldsymbol{C})^{*}$.

Definition 6. Let $F_{q}(\xi, \eta)$ be the subalgebra of $B_{q}(2)^{\circ}$ generated by the coefficient space for $\pi(\xi, \eta)$.

Main Theorem 7. Let q, q^{\prime}, ξ be non-zero complex numbers. Assume neither q nor q^{\prime} is a root of 1 .
(a) The bialgebra $F_{q}\left(\xi, \xi^{2} q^{2}\right)$ is cosemisimple, i.e., it is contained in the coradical of $B_{q}(2)^{\circ}$.
(b) The bialgebra map $B_{q}(2) \rightarrow F_{q}\left(\xi, \xi^{2} q^{\prime 2}\right)^{\circ}$ corresponding to the inclusion $F_{q}\left(\xi, \xi^{2} q^{\prime 2}\right) \rightarrow B_{q}(2)^{\circ}$ is injective.
(c) There is a bialgebra isomorphism

$$
B_{q^{\prime}}(2) \simeq F_{q}\left(\xi, \xi^{2} q^{\prime 2}\right)
$$

such that the composite

$$
B_{q}(2) \rightarrow F_{q}\left(\xi, \xi^{2} q^{\prime 2}\right)^{\circ} \simeq B_{q^{\prime}}(2)^{\circ}
$$

has image $F_{q^{\prime}}\left(\xi, \xi^{2} q^{2}\right)$.
In general, for coalgebras C and C^{\prime} there is 1-1 correspondence among
(1) a linear map $\phi: C \rightarrow C^{\prime *}$,
(2) a linear map $\phi^{\prime}: C^{\prime} \rightarrow C^{*}$,
(3) a bialgebra map $\psi: T(C) \rightarrow T\left(C^{\prime}\right)^{\circ}$,
(4) a bialgebra map $\psi^{\prime}: T\left(C^{\prime}\right) \rightarrow T(C)^{\circ}$,
(5) a bialgebra pairing $\chi: T(C) \times T\left(C^{\prime}\right) \rightarrow C$.

Let $C=C^{\prime}=M_{2}(C)^{*}$ with canonical base $x_{i j}, 1 \leq i, j \leq 2$, and let q, q^{\prime}, ξ as before. Take as ϕ of (1) the following $\operatorname{map} \phi_{\xi}\left(q, q^{\prime}\right)$:

$$
\begin{aligned}
& x_{11} \mapsto \frac{\xi}{2}\left(\begin{array}{cc}
1+q+q^{\prime}-q q^{\prime} & \\
x_{12} \mapsto & 1+q-q^{\prime}+q q^{\prime}
\end{array}\right), \\
& x_{21} \mapsto \frac{\xi}{2}\left(\begin{array}{cc}
-(1-q)\left(1+q^{\prime}\right) & -(1-q)\left(1-q^{\prime}\right)
\end{array}\right), \\
& -(1+q)\left(1+q^{\prime}\right) \\
& x_{22} \mapsto \frac{\xi}{2}\left(\begin{array}{cc}
1-q+q^{\prime}+q q^{\prime} & \\
& 1-q-q^{\prime}-q q^{\prime}
\end{array}\right) .
\end{aligned}
$$

Then we have
(i) $\phi^{\prime}=\phi_{\xi}\left(q^{\prime}, q\right)$,
(ii) ψ factors through $B_{q}(2) \operatorname{via}\left(\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right) \mapsto\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
(iii) ψ^{\prime} has image $F_{q}\left(\xi, \xi^{2} q^{\prime 2}\right)$.

It follows that ψ and ψ^{\prime} induce bialgebra maps

$$
B_{q}(2) \rightarrow F_{q^{\prime}}\left(\xi, \xi^{2} q^{2}\right) \quad \text { and } \quad B_{q^{\prime}}(2) \rightarrow F_{q}\left(\xi, \xi^{2} q^{\prime 2}\right)
$$

Theorem 7 (c) means these are isomorphisms.
Corollary 8. (a) If $q(\neq 0)$ is not a root of $1, B_{q}(2)$ is co-semisimple. It is the direct sum of C and copies of $M_{2}(C)^{*}$.
(b) If $q, q^{\prime} \in k-\{0\}$ are not roots of 1 , there is a non-degenerate bialgebra pairing

$$
B_{q}(2) \times B_{q^{\prime}}(2) \rightarrow C .
$$

Let $q(\neq 0)$ be not a root of 1 , and let $\hat{q}=\frac{1}{2}\left(q+q^{-1}\right)$. Let $S=\boldsymbol{C}[x, y] /$ $\left((1-\hat{q}) x^{2}-(1+\hat{q}) y^{2}\right)$ which is isomorphic to $C[x, y] /(x y)$ by a linear change of generators.

Lemma 9. The map $x \rightarrow x \otimes a+y \otimes c$ and $y \mapsto x \otimes b+y \otimes d$ makes S into a right $B_{q}(2)$-comodule algebra.

Let $S^{!}$be the Manin dual of S [3]. It is a left $B_{q}(2)$-comodule algebra. The Koszul complex (ibid.)

$$
\cdots \rightarrow S \otimes S_{n}^{!*} \xrightarrow{\partial} S \otimes S_{n-1}^{!*} \rightarrow \cdots \rightarrow S \otimes S_{0}^{!*} \rightarrow C \rightarrow 0
$$

consists of right $B_{q}(2)$-comodules and comodule maps.
Theorem 10. The Koszul complex is exact. The trivial comodule \boldsymbol{C} and $\operatorname{Im}\left(\partial: S_{m} \otimes S_{n+1}^{* *} \rightarrow S_{m+1} \otimes S_{n}^{!*}\right)$, $m, n \geq 0$, form a complete set of simple $B_{q}(2)$-comodules.

Here, ($)_{n}$ denotes the degree n part.

References

[1] T. Hayashi: Quantum groups and quantum determinants (preprint).
[2] R. Larson and J. Towber: Two dual classes of bialgebras related to the concepts of "quantum group" and "quantum Lie algebra" (preprint).
[3] Yu. Manin: Quantum groups and non-commutative geometry. CRM, Univ. de Montréal (1988).
[4] M. Sweedler: Hopf Algebras. Benjamin, New York (1969).
[5] M. Takeuchi and D. Tambara: A new one-parameter family of 2×2 matrix bialgebras (preprint).
[6] N. Jing and M. Ge: Letters in Math. Phys., 21, 193-203 (1991).

[^0]: *) University of Tsukuba.
 **) Hirosaki University.

