78. A Note on the Class-number of Real Quadratic Fields with Prime Discriminants

By Hideo Yokor
College of General Education, Nagoya University
(Communicated by Shokichi Iyanaga, m. J. a., Nov. 12, 1991)

Introduction. In recent papers [6], [7], [8], we defined some new integer-valued p-invariants for any rational prime p congruent to $1 \bmod 4$ and studied relationships among them. In particular, we defined in [6] the new p-invariant n_{p} by

$$
\left|t_{p} / u_{p}^{2}-n_{p}\right|<1 / 2
$$

through the fundamental unit

$$
\varepsilon_{p}=\left(t_{p}+u_{p} \sqrt{p}\right) / 2 \quad(>1)
$$

of real quadratic field $\boldsymbol{Q}(\sqrt{p})$ with prime discriminant, which turned out to be very useful as far as $n_{p} \neq 0$ (i.e. $2 t_{p}>u_{p}^{2}$).

In this paper, we shall introduce some more new p-invariants q_{p}, r_{p}, r_{p}^{*}, a_{p}, b_{p} and provide lower bounds for the class-number h_{p} of $\boldsymbol{Q}(\sqrt{p})$ (Theorems 1, 2). Moreover, we shall show that if $\boldsymbol{Q}(\sqrt{p})$ is of R-D type and $h_{p}=1,3$ or 5 , then n_{p} has certain simple multiplicative structures (Theorem 3).
§ 1. We first prove the following theorem which is fundamental throughout this paper, providing a lower bound for the class-number h_{p} of real quadratic field $\boldsymbol{Q}(\sqrt{p})$ with prime discriminant.

Theorem 1. For any prime p congruent to $1 \bmod 4$, we denote by q_{p} the least prime number which splits completely in $\boldsymbol{Q}(\sqrt{p})$, i.e. $\left(p / q_{p}\right)=1$, where (/) means Legendre's symbol.

Then if $n_{p} \neq 0, h_{p} \geqq \log n_{p} / \log q_{p}$ holds.
Proof. In the case $q_{p} \neq 2$, we proved this already in [6]. In the case $q_{p}=2$, we can prove the following lemma in a similar way as in Lemma 2 in [6]:

Lemma. For any square-free positive integer D congruent to $1 \bmod 8$, we denote by e the order of prime factors of 2 in the ideal class group of $\boldsymbol{Q}(\sqrt{\bar{D}})$.

Then, the diophantine equation $x^{2}-D y^{2}= \pm 4 \cdot 2^{e}$ has at least one nontrivial solution, while for any integer e^{\prime} such that $1 \leqq e^{\prime}<e$ the diophantine equation $x^{2}-D y^{2}= \pm 4 \cdot 2^{e^{\prime}}$ has no non-trivial integral solution.

By using this lemma together with Lemma 1 in [6], in a similar way as in the proof of Theorem in [6] we can prove

$$
q_{p}=2 \quad \text { and } \quad h_{p} \geqq \log n_{p} / \log 2
$$

for any prime $p \equiv 1 \bmod 8$.
We next provide a lower bound r_{p} for the class-number of $Q(\sqrt{p})$
which is also a new p-invariant.
Theorem 2. If $n_{p} \neq 0$, then we denote by r_{p} the sum of multiplicities of all prime factors in n_{p} which completely split in $\boldsymbol{Q}(\sqrt{p})$.

Then $h_{p} \geqq r_{p}$ holds.
Proof. Let $q_{1}, q_{2}, \cdots, q_{r}$ be all distinct prime factors of n_{p} which completely split in $Q(\sqrt{p})$, and put

$$
n_{p}=n_{0} \cdot \Pi_{i} q_{i}^{e_{i}}, \quad\left(n_{0}, q_{i}\right)=1
$$

Then, $r_{p}=\Sigma_{i} e_{i}$ is clearly p-invariant.
On the other hand, since $q_{p} \leqq q_{i}$, we have easily

$$
\begin{aligned}
\log n_{p} / \log q_{p} & =\left(\log n_{0} / \log q_{p}\right)+\Sigma_{i}\left(e_{i} \log q_{i} / \log q_{p}\right) \\
& \geqq \Sigma_{i} e_{i} \\
& =r_{p} .
\end{aligned}
$$

Hence from Theorem 1 we obtain

$$
h_{p} \geqq \log n_{p} / \log q_{p} \geqq r_{p}
$$

provided $n_{p} \neq 0$.
Remark. Especially, if there is at least one prime factor of n_{p} which does not split in $Q(\sqrt{p})$, or which splits in $\boldsymbol{Q}(\sqrt{p})$ but is greater than q_{p}, then $h_{p}>r_{p}$ holds.

If we put

$$
t_{p}=u_{p}^{2} n_{p} \pm a_{p} \quad\left(a_{p} \geqq 0\right),
$$

then we get

$$
0 \leqq a_{p}<u_{p}^{2} / 2 \quad \text { and } \quad a_{p}^{2}+4 \equiv 0 \quad\left(\bmod u_{p}^{2}\right) .
$$

Hence if we put moreover $a_{p}^{2}+4=b_{p} u_{p}^{2}$, then both a_{p} and b_{p} are also p invariants, and we can describe p as follows:

$$
p=u_{p}^{2} n_{p}^{2} \pm 2 a_{p} n_{p}+b_{p} .
$$

Here, $a_{p}=0$ if and only if $u_{p}=1$ or 2 (cf. [6]).
On the other hand, for a square-free positive integer D, we put

$$
D=m^{2}+r, \quad-m<r \leqq m .
$$

Then if $4 m \equiv 0(\bmod r)$ holds, $\boldsymbol{Q}(\sqrt{\bar{D}})$ is called of Richaud-Degert type (or simply R-D type). A real quadratic field $\boldsymbol{Q}(\sqrt{p})$ with prime discriminant is of R-D type if and only if $a_{p}=0$ (cf. [1], [3], [4]).

Under these circumstances, we have first the following application of Theorem 2:

Corollary 2.1. If $\boldsymbol{Q}(\sqrt{p})$ is of $R-D$ type and $n_{p} \neq 0$, then $h_{p} \geqq r_{p}^{*}$, where r_{p}^{*} is the sum of multiplicities of all prime factors in n_{p}.

Proof. For real quadratic fields $\boldsymbol{Q}(\sqrt{ } \bar{p})$ of R-D type,

$$
p=n_{p}^{2}+4 \quad\left(u_{p}=1, b_{p}=4\right)
$$

or

$$
p=4 n_{p}^{2}+1 \quad\left(u_{p}=2, b_{p}=1\right)
$$

(cf. [1], [3], [4]). Hence, in both cases we know $(p / q)=1$ for any prime factor q of n_{p}, i.e. q splits always in $Q(\sqrt{p})$. Therefore, Corollary 2.1 follows immediately from Theorem 2.

For real quadratic fields $\boldsymbol{Q}(\sqrt{p})$ which are not of R-D type, we have similarly next two applications :

Corollary 2.2. If prime p congruent to $1 \bmod 4$ is described in one of the following three forms:
(1) $p=25 n^{2} \pm 22 n+5$,
(2) $p=169 n^{2} \pm 58 n+5$,
(3) $p=289 n^{2} \pm 152 n+20$, then $\quad h_{p} \geqq r_{p}^{*}$,
where r_{p}^{*} is the sum of multiplicities of all prime factors q of n_{p} such that $q \equiv \pm 1(\bmod 10)$.

Proof. In these cases, $u_{p}=5,13,17, a_{p}=11,29,76, b_{p}=5,5,20$ respectively. Hence, in any case we know for any prime factor q of $n(p / q)$ $=\left(b_{p} / q\right)=(5 / q)$. Therefore, the prime q splits completely in $\boldsymbol{Q}(\sqrt{p})$ if and only if $q \equiv \pm 1(\bmod 10)$.

Corollary 2.3. If prime p congruent to $1 \bmod 4$ is described in the following form : $p=841 n^{2} \pm 164 n+8$, then $\quad h_{p} \geqq r_{p}^{*}$,
where r_{p}^{*} is the sum of multiplicities of all prime factors q of n such that $q \equiv \pm 1(\bmod 8)$.

Proof. In this case, $u_{p}=29, a_{p}=82$ and $b_{p}=8$. Since $(p / q)=\left(b_{p} / q\right)=$ $(2 / q)$, the prime q splits completely in $\boldsymbol{Q}(\sqrt{p})$ if and only if $q \equiv \pm 1(\bmod 8)$.
§ 2. For real quadratic fields $\boldsymbol{Q}(\sqrt{p})$ of R-D type, we already obtained a necessary and sufficient condition for the class-number h_{p} to be one in terms of p-invariants n_{p} and q_{p} (cf. [5]). Similarly, by considering the structure of n_{p} from such point of view as r_{p}^{*} we provide a necessary condition for the class-number to be three or five respectively in terms of p-invariants n_{p} and q_{p} as follows:

Theorem 3. Let $\boldsymbol{Q}(\sqrt{p})$ be a real quadratic field of $R-D$ type with prime discriminant. For the class-number h_{p} of $\boldsymbol{Q}(\sqrt{p})$,
(1) $h_{p}=1$ if and only if $n_{p}=q_{p}$.
(2) If $h_{p}=3$, then n_{p} is one of the following three forms:

1) $n_{p}=q \quad\left(\right.$ prime $\left.>q_{p}\right)$,
2) $n_{p}=q_{1} q_{2} \quad$ (primes $\geqq q_{p}$),
3) $n_{p}=q_{p}^{3}$.
(3) If $h_{p}=5$, then n_{p} is one of the following five forms:
4) $n_{p}=q \quad\left(\right.$ prime $\left.>q_{p}\right)$,
5) $n_{p}=q_{1} q_{2} \quad$ (primes $\geqq q_{p}$),
6) $n_{p}=q_{1}^{2} q_{2} \quad\left(\right.$ primes $\left.\geqq q_{p}\right)$,
7) $n_{p}=q^{4} \quad\left(\right.$ prime $\left.\geqq q_{p}\right)$,
8) $n_{p}=q_{p}^{5}$.

Proof. The assertion (1) was already obtained in [5] as above mentioned. In the case $h_{p}=3$, we get $r_{p}^{*} \leqq 3$ from Corollary 2.1. Hence, if we assume $r_{p}^{*}=3$ and n_{p} has at least two distinct prime factors q_{1}, q_{2}, then the value of the divisor function is $\tau\left(n_{p}\right) \geqq 6$.

On the other hand, we have $h_{p} \geqq \tau\left(n_{p}\right)-1$ from Mollin's result (cf. [2]), which implies a contradiction with $h_{p}=3$. Therefore, from the Remark of

Theorem 2, we get $n_{p}=q_{p}^{3}$, and hence assertion (2) also.
Assertion (3) is obtained similarly by using Mollin's results.
Examples. (1) $p=1,373: h_{p}=3, u_{p}=1, n_{p}=37, q_{p}=3, r_{p}^{*}=1$.
(2) $p=229: h_{p}=3, u_{p}=1, n_{p}=3 \cdot 5, q_{p}=3, r_{p}^{*}=2$.
(3) $p=257: h_{p}=3, u_{p}=2, n_{p}=2^{3}, q_{p}=2, r_{p}^{*}=3$.
(4) $p=10,613: h_{p}=5, u_{p}=1, n_{p}=103, q_{p}=7, r_{p}^{*}=1$.
(5) $p=401: h_{p}=5, u_{p}=2, n_{p}=2 \cdot 5, q_{p}=2, r_{p}^{*}=2$.

Finally, we provide a table of all primes $p=n_{p}^{2}+4$ for $n_{p} \leqq 135$ and $p=4 n_{p}^{2}+1$ for $n_{p} \leqq 75$ together with p-invariants h_{p}, q_{p}, n_{p} and r_{p}^{*}. From

$p=n^{2}+4$	h_{p}	q_{p}	n_{p}	r_{p}^{*}
5	1		1	1
13	1	3	3	1
29	1	5	5	1
53	1	7	7	1
173	1	13	13	1
229	3	3	$15=3 \cdot 5$	2
293	1	17	17	1
733	3	3	$27=3^{3}$	3
1,093	5	3	$33=3 \cdot 11$	2
1,229	3	5	$35=5 \cdot 7$	2
1,373	3	7	37	1
2,029	7	3	$45=3^{2} \cdot 5$	3
2,213	3	7	47	1
3,253	5	3	$57=3 \cdot 19$	2
4,229	7	5	$65=5 \cdot 13$	2
4,493	3	11	67	1
5,333	3	11	73	1
7,229	5	5	$85=5 \cdot 17$	2
7,573	9	3	$87=3 \cdot 29$	2
9,029	7	5	$95=5 \cdot 19$	2
9,413	3	13	97	1
10,613	5	7	103	1
13,229	5	5	$115=5 \cdot 23$	2
13,693	15	3	$117=3^{2} \cdot 13$	3
15,629	9	5	$125=5^{3}$	3
18,229	19	3	$135=3^{3} \cdot 5$	4

$p=4 n^{2}+1$	h_{p}	q_{p}	n_{p}^{*}	r_{p}^{*}
17	1	2	2	1
37	1	3	3	1
101	1	5	5	1
197	1	7	7	1
257	3	2	$8=2^{3}$	3
401	5	2	$10=2 \cdot 5$	2
577	7	2	$12=2^{2} \cdot 3$	3
677	1	13	13	1
1,297	11	2	$18=2 \cdot 3^{2}$	3
1,601	7	2	$20=2^{2} \cdot 5$	3
2,917	3	3	$27=3^{3}$	3
3,137	9	2	$28=2^{2} \cdot 7$	3
4,357	5	3	$33=3 \cdot 11$	2
5,477	3	13	37	1
7,057	21	2	$42=2 \cdot 3 \cdot 7$	3
8,101	13	3	$45=3^{2} \cdot 5$	3
8,837	3	11	47	1
12,101	5	5	$55=5 \cdot 11$	2
13,457	13	2	$58=2 \cdot 29$	2
14,401	43	2	$60=2^{2} \cdot 3 \cdot 5$	4
15,377	13	2	$62=2 \cdot 31$	2
15,877	13	3	$63=3^{2} \cdot 7$	3
16,901	7	5	$65=5 \cdot 13$	2
17,957	7		67	1
21,317	5	7	73	1
22,501	11	3	$75=3 \cdot 5^{2}$	3

these tables, we may conjecture the following, which shows that it would be very interesting to investigate q_{p} : if n_{p} is not prime, then $n_{p} \equiv 0\left(\bmod q_{p}\right)$.

References

[1] G. Degert: Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg, 22, 92-97 (1958).
[2] R. A. Mollin: On the divisor function and class numbers of real quadratic fields. I. Proc. Japan Acad., 66A, 109-111 (1990).
[3] C. Richaud: Sur la résolution des équation $x^{2}-A y^{2}= \pm 1$. Atti Accad. Pontif. Nuovi Lincei, pp. 177-182 (1866).
[4] H. Yokoi: On real quadratic fields containing units with norm - 1. Nagoya Math. J., 33, 139-152 (1968).
[5] -: Class-number one problem for certain kind of real quadratic fields. Proc. Int. Conf. on Class Numbers and Fundamental Units of Algebraic Number Fields, June 24-28, 1986, Katata, Japan, pp. 125-137.
[6] -: Some relations among new invariants of prime number p congruent to 1 mod 4. Advanced Studies in pure Math., 13, 493-501 (1988).
[7] --: The fundamental unit and class number one problem of real quadratic fields with prime discriminant. Nagoya Math. J., 120, 51-59 (1990).
[8] -: The fundamental unit and bounds for class numbers of real quadratic fields. ibid., 124, 181-197 (1991).

