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Introduction. In recent papers [6], [7], [8], we defined some new
integer-valued p-invariants for any ratio.nal prime p co.ngruent to. 1 mod 4
and studied relationships among them. In particular, we defined in [6] the
new p-invariant np by

through the undamental unit
=(t+u/-)/2 (>1)

of real quadratic field Q(/-) with prime discriminant, which turned out
to. be very useful as ar as n:/:0 (i.e. 2tu).

In this paper, we shall introduce some too.re new p-invariants q,, r,,
r*, %, b, and pro.vide lo.wer bounds o.r the class-number h o.f Q(/)
(Theorems 1, 2). Moreo.ver, we shall show that if Q(/-) is of R-D type
and h= 1, 3 or 5, then n has certain simple multiplicative structures (The-
orem 3).

1. We first pro.ve the following theorem which is fundamental
throughout this paper, providing a lower bound fo.r the class-number h, of
real quadratic field Q(/-) with prime discriminant.

Theorem 1. For any prime p congruent to I mod 4, we denote by qp
the least prime number which splits completely in Q(/-), i.e. (p/%)=1,
where ( ) means Legendre’s symbol.

Then if %:/:0, h>=log % /log % holds.
Proof. In the case %:/:2, we proved this already in [6]. In the case

q--2, we can prove the following lemma in a similar way as in Lemma 2
in [6]"

Lemma. For any square-free positive integer D congruent to I mod 8,
we denote by e the order of prime factors of 2 in the ideal class group of

Then, the diophantine equation, x--Dy= +_4.2 has at least one non-
trivial solution, while for any integer e’ such that l<=e’e the diophantine
equation x--Dy= +4.2’ has no non-trivial integral solution.

By using this lemma together with Lemma 1 in [6], in a similar way
as in the pro.of of Theorem in [6] we can prove

qp=2 and hlogn/log2
or any prime p I mod 8.

We next pro.vide a lower bound r or the class-number o Q(/-)
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which is also a new p-invariant.
Theorem 2. If n=/=0, then we denote by r the sum of mltiplicities

of all prime factors in np which completely split in Q(/-).
Then hp>=r holds.
Proof. Let q, q, ..., q be all distinct prime factors of n, which com-

pletely split in Q(J), and put
n 0 H (n0 q) 1qi,

Then, r=e is clearly p-invariant.
On the other hand, since q,g q, we have easily

log n/lo.g %=(log n0/lo.g q,)+(e log q/log %)

Hence from Theorem 1 we obtain

h log n/log q,r
provided n0.

Remark. Especially, if there is at least one prime factor of n which
does not split in Q(), or which splits in Q() but is greater than %,
then hr holds.

If we put

t=una (aO),
then we get

O<au/2 and a+4-----0 (mo.du).
Hence if we put moreover a,-t-4--bu, then both ap and b are also p-
invariants, and we can describe p as ollows"

p=un+_2an+.b.
Here, a,=0 if and only if u=l or 2 (cf. [6]).

On the other hand, for a square-free positive integer D, we put
D=m+r, -mr<__m.

Then if 4m=__0 (rood r)holds, Q(/D) is called of Richaud-Degert type (or
simply R-D type). A real quadratic field Q(/) with prime discriminant
is o R-D type it and only if ap=0 (cf. [1], [3], [4]).

Under these circumstances, we have first the following application of
Theorem 2"

Corollary] 2.1. If Q(/-) is of R-D type and n=/=O, then hr*,
where r* is the sum of multiplicities of all prime factors in n.

Proof. For real quadratic fields Q(/-) of R-D type,
p--n+4 (u=l, b--4)

or
p-4n-t- 1 (u 2, b 1)

(cf. [1], [3], [4]). Hence, in both cases we know (p/q)=l for any prime
actor q of n, i.e. q splits always in Q(/-). Therefore, Corollary 2.1
ollows immediately rom Theorem 2.

For real quadratic fields Q(/-) which are not of R-D type, we have
similarly next two applications"
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Corollary 2.2. If prime p congruent to lmod 4 is described in one
of the following three forms"

1 ) p 25n._+ 22n+ 5,
( 2 ) p 169n +_ 58n+ 5,
(3) p=289n2_+152n+20,

then h>=r*,
where r* is the sum of multiplicities of all prime factors q of n, such that
q---- + 1 (mod 10).

Proof. In these cases, u,=5, 13, 17, a,--11, 29, 76, b,--5, 5, 20 re-
spectively. Hence, in any case we know for any prime factor q of n (p/q)
=(b,/q)=(5/q). Therefore, the prime q splits completely in Q(/-) if
and only if q-___ 1 (mod 10).

Corollary 2.:. If prime p congruent to lmod 4 is described in the
following form" p=841n +_ 164n +8,
then hr*
where r* is the sum of multiplicities of all prime factors q of n such that
q----__ +_ 1 (mod 8).

Proof. In this case, u=29, a=82 and b=8. Since (p/q)=(b/q)=
(2/q), the prime q splits completely in Q(/-) if and only if q=__ _+1 (mod 8).

2. For real quadratic fields Q(/-) of R-D type, we already obtained
a necessary and sufficient condition for the class-number h, to be one in
terms of p-invariants n, and q (cf. [5]). Similarly, by considering the
structure of n, from such point of view as r* we provide a necessary
condition for the class-number to be three or five respectively in terms o
p-invariants n and % as follows"

Theorem :. Let Q(/-) be a real quadratic field of R-D type with
prime discriminant. For the class-number h of Q(/-),

( 1 ) h,=l if and only if n=q.
(2) If h=3, then n is one of the following three forms"

1) n,-- q (prime %),
2) n,-- qq2 (primes %),
3) n,--q.

3 ) If h---5, then n is one of the following five forms"
1) n,--q (prime %),
2) n=qlq2 (primes qp),
3) n,-- qq (primes qp),
4) n-q4 (prime %),
5) n-q.

Proof. The assertion (1) was already obtained in [5] as above men-
tioned. In the case h=3, we get r*<__3 from Corollary 2.1. Hence, if we
assume r*--3 and n has at least two distinct prime factors q, q, then the
value of the divisor function is r(n)6.

On the other hand, we have hr(n,)-I from Mollin’s result (cf. [2]),
which implies a contradiction with h=3. Therefore, from the Remark of
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Theorem 2, we get n--q, and hence assertion (2) also.
Assertion (3),is obtained similarly by using Mollin’s results.
Examples. (1) p=1,373" h=3, u=l, n=37, q=3, r*--1.
(2) p=229" h=3, u=l, n=3.5, q=3, r*=2.
(3) p=257" h=3, u=2, n,=2, q=2, r*=3.
(4) p--10,613" h=5, u=l, n=103, %=7, r*=l.
( 5 ) p =401" h= 5, u=2, n=2.5, q=2, r* 2.
Finally, we provide a table of all primes p=n+4 for n<135 and

p=4n+l for n,_<_75 together with p-invariants h, %, n and r*. From

p=n+4 np r* p=4n+1 hp n* r*
5

13

29

53

173

229

293

733

1,093
1,229
1,373

2,029

2,213

3,253
4,229

4,493

5,333

7,229

7,573

9,029

9,413

10, 613

13,229
13,693

15, 629

18, 229

h q q

1 1 1 17 1 2 2 1

1 3 3 1 37 1 3 3 1

1 5 5 1 101 1 5 5 1

1 7 7 1 197 1 7 7 1

1 13 13 1 257 3 2 8=2 3

3 3 15=3.5 2 401 5 2 10=2.5 2

1 17 17 1 577 7 2 12=2.3 3

3 3 27--3 3 677 1 13 13 1

5 3 33=3.11 2 1,297 11 2 18=2.3 3

3 5 35=5.7 2 1,601 7 2 20=2.5 3

3 7 37 1 2,917 3 3 27=3 3

7 3 45=3.5 3 3,137 9 2 28---2.7 3

3 7 47 1 4,357 5 3 33=3.11 2

5 3 57=3.19 2 5,477 3 13 37 1

7 5 65=5.13 2 7,057 21 2 42=2.3.7 3

3 11 67 1 8,101 13 3 45--3.5 3

3 11 73 1 8, 837 3 11 47 1

5 5 85=5.17 2 12,101 5 5 55=5.11 2

9 3 87=3.29 2 13,457 13 2 58--2.29 2

7 5 95=5.19 2 14, 401 43 2 60=2.3.5 4

3 13 97 1 15,377 13 2 62--2.31 2

5 7 103 1 15,877 13 3 63=3.7 3

5 5 115=5.23 2 16, 901 7 5 65=5.13 2

15 3 117=3.13 3 17,957 7 67 1

9 5 125=5 3 21,317 5 7 73 1

19 3 135=3.5 4 22,501 11 3 75=3.5 3
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these tables, we may conjecture the following, which shows that it would
be very interesting to investigate %" if n is not prime, thenn0 (mod q).
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