A Note on Class Groups of Abelian Number Fields 86.

By Ken YAMAMURA

Department of Mathematics, National Defence Academy

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1991)

Let A be any finite abelian group. It is known that there exist (many) abelian number fields whose class groups contain a subgroup isomorphic to A. Known such fields K are all imaginary and have large Galois group Gal(K/Q) (see [1], [5], Cor. 3.9)*). In this note we show that there exist infinitely many real abelian number fields having such a property whose Galois group Gal(K/Q) are elementary abelian:

Theorem 1. For any finite abelian group A, there exist infinitely many real elmentary 2-abelian number fields K (i.e. real abelian extensions of **Q** whose Galois groups are of type $(2, 2, \dots, 2)$ whose class groups contain a subgroup isomorphic to A. Moreover, among these fields we can take a sequence K_1, K_2, \cdots such that $(d_{K_i}, d_{K_j}) = 1$ if $i \neq j$ and all of the 2rank of $Gal(K_i/Q)$ are equal to rank A. Here, d_{K_i} denotes the discriminant of K_i .

We can prove this easily using genus theory and the following theorem on the divisibility of class numbers of real quadratic number fields:

Theorem Y (Yamamoto [5], Part I, Th. 2). For any natural number n and disjoint finite sets of prime numbers S_1 , S_2 , S_3 , there exist infinitely many real quadratic number fields F such that

(a) The class group of F contains a subgroup isomorphic to Z/nZ.

(i=1),

(b) All primes contained in S_i are decomposed in F remain prime in F(i=2),

are ramified in F(i=3).

Proof of Theorem 1. By the structure theorem for finite abelian groups, we may write

 $A \cong \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z}, \quad n_1|n_2|\cdots|n_r,$

for some natural numbers n_1, n_2, \dots, n_r . For each $i=1, 2, \dots, r$, we take a real quadratic number field F_i whose class group contains a subgroup isomorphic to Z/n_iZ . We can take these fields such that $(d_{F_i}, d_{F_j})=1$ if $i \neq j$ by the condition (b) of Theorem Y. Put $K = F_1 F_2 \cdots F_r$ (the composite field) and then K is a real elementary 2-abelian field satisfying the required property. Let L_i be an unramified abelian extension of F_i such that $Gal(L_i/F_i) \cong \mathbb{Z}/n_i\mathbb{Z}$. By genus theory the maximal extension of F_i which is unramified at all finite primes and abelian over Q is obtained by

Recently, Osada[3] proved the existence of the maximal real subfield of a cyclotomic field with such a property. But, this field has also large Galois group and his result is obtained from ours as a corollary.

composing F_i with all quadratic number fields whose discriminants are prime discriminant divisors of d_{F_i} . Therefore, from the definition of K, L_i and K are linearly independent over F_i . Hence L_iK/K is an unramified abelian extension such that $Gal(L_iK/K) \cong Z/n_i Z$. Since $(d_{F_i}, d_{F_j}) = 1$, if $i \neq j$, $L_i K$ and $L_j K$ are linearly independent over K. Therefore, if we put $M = L_1 L_2 \cdots L_r K$, then M/K is an unramified abelian extension such that $Gal(M/K) \cong A$. The infiniteness is proved by using the condition (b) of Theorem Y.

For any odd prime number l, if we have a corresponding result to Theorem Y on cyclic number fields of degree l, we can generalize Theorem 1 as follows:

"Let l be any prime number. For any abelian group A, there exist infinitely many (real) elementary l-abelian number fields whose class groups contain a subgroup isomorphic to A. Moreover, among these fields we can take a sequence K_1, K_2, \cdots such that $(d_{K_i}, d_{K_j})=1$ if $i \neq j$ and all of the lrank of $Gal(K_i/Q)$ are equal to rank A."

For l=3, Uchida [4] proved a corresponding result, and Nakano improved his result:

Theorem N (Nakano [2]). For any natural number n, there exist infinitely many cyclic cubic number fields whose class groups contain a subgroup isomorphic to $(Z/nZ)^2$.

From Nakano's proof we can impose on the fields conditions on ramification. Therefore, we have

Theorem 2. For any finite abelian group A, there exist infinitely many elementary 3-abelian number fields whose class groups contain a subgroup isomorphic to A. Moreover, among these fields we can take a sequence K_1, K_2, \cdots such that $(d_{K_i}, d_{K_j})=1$ if $i \neq j$ and all of the 3-rank of $Gal(K_i/Q)$ are at most [rank A/2].

References

- G. Cornell: Abhyankar's lemma and the class group. Number Theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979). Lect. Notes in Math., vol. 751, Springer, Berlin, pp. 82-88 (1979).
- [2] S. Nakano: Ideal class groups of cubic cyclic fields. Acta Arith., 46, 297-300 (1986).
- [3] H. Osada: Note on class number of real cyclotomic number field. III (preprint).
- [4] K. Uchida: Class numbers of cubic cyclic fields. J. Math. Soc. Japan, 26, 447-453 (1974).
- [5] L. C. Washington: Introduction to Cyclotomic Fields. Graduate Text in Mathematics. vol. 83, Springer-Verlag, New York, Berlin (1980).
- [6] Y. Yamamoto: On unramified Galois extensions of quadratic number fields. Osaka J. Math., 7, 57-76 (1970).