81. Remarks on Viscosity Solutions for Evolution Equations

By Yun-Gang Chen,** Yoshikazu GigA,**) and Shun'ichi Goto***)

(Communicated by Kunihiko Kodarra, m. J. A., Dec. 12, 1991)

1. Introduction. We consider a degenerate parabolic equation

$$
\begin{equation*}
\partial u / \partial t+F\left(t, x, u, \nabla u, \nabla^{2} u\right)=0, \tag{1}
\end{equation*}
$$

where ∇ stands for the spatial derivatives. We are concerned with a viscosity subsolution which needs not to be continuous. We say a function $u(t, x)$ defined in a parabolic neighborhood of $\left(t_{0}, x_{0}\right)$ is left accessible at $\left(t_{0}, x_{0}\right)$ if there are sequences $x_{l} \rightarrow x_{0}, t_{l} \rightarrow t_{0}$ with $t_{l}<t_{0}$ such that $\lim _{l \rightarrow \infty} u\left(t_{l}, x_{l}\right)$ $=u\left(t_{0}, x_{0}\right)$. Our goal is to show that a viscosity subsolution is left accessible at each (parabolic) interior point of the domain of definition for a wide class of F. We also clarify the relation between viscocity subsolutions defined on time interval $(0, T)$ and those on $(0, T]$. Similar problems are studied in other contexts by Crandall and Newcomb [3] and by Ishii [7]. We thank Professor Hitoshi Ishii for pointing out these references.

There are technical errors in the proof of Ishii's lemma up to the terminal time in our previous work [1, Lemma 3.1 and Proposition 3.2]. If we note left accessibility, the proof can be easily fixed. We take this opportunity to correct technical errors in [1] somewhat related to left accessibility. We thank Professor Joseph Fu for pointing out a couple of errors in the proof of [1, Lemma 3.1 and Proposition 3.2].

For $h: L \rightarrow \boldsymbol{R}\left(L \subset \boldsymbol{R}^{d}\right)$ we associate its lower (upper) semicontinuous relaxation $h_{*}\left(h^{*}\right): \bar{L} \rightarrow \tilde{\boldsymbol{R}}=\boldsymbol{R} \cup\{ \pm \infty\}$ defined by

$$
h_{*}(z)=\liminf _{\varepsilon \in 0}\{h(y) ;|z-y|<\varepsilon, y \in L\}, \quad z \in \bar{L}
$$

and $h^{*}(z)=-(-h)_{*}(z)$. Let Ω be an open set in \boldsymbol{R}^{n}. For $T>0$ let W be a dense subset of $A=(0, T] \times \Omega \times \boldsymbol{R} \times \boldsymbol{R}^{n} \times \boldsymbol{S}^{n}$, where \boldsymbol{S}^{n} denotes the space of $n \times n$ real symmetric matrices. Suppose that $F=F(t, x, r, p, X)$ is a real valued function defined in W. Since W is dense in A, F^{*} and $F_{*}: A \rightarrow \tilde{\boldsymbol{R}}$ are well-defined. Any function $u: Q \rightarrow \boldsymbol{R}$ (resp. $Q_{0} \rightarrow \boldsymbol{R}$) is called a viscosity subsolution of (1) in $Q=(0, T] \times \Omega$ (resp. $\left.Q_{0}=(0, T) \times \Omega\right)$ if $u^{*}<\infty$ on \bar{Q} and if, whenever $\psi \in C^{2}(Q)\left(\right.$ resp. $\left.C^{2}\left(Q_{0}\right)\right),(t, x) \in Q\left(\right.$ resp. $\left.Q_{0}\right)$ and $\left(u^{*}-\psi\right)(t, x)=$ $\max _{Q}\left(u^{*}-\psi\right)\left(\operatorname{resp} . \max _{Q_{0}}\left(u^{*}-\psi\right)\right)$ it holds that
(2) $\psi_{t}(t, x)+F_{*}\left(t, x, u^{*}(t, x), \nabla \psi(t, x), \nabla^{2} \psi(t, x)\right) \leq 0$,
where $\psi_{t}=\partial \psi / \partial t$. We shall suppress the word viscocity. One can easily observe that u is a subsolution of (1) in Q (resp. Q_{0}) if and only if u is a subsolution of (1) in $(0, T] \times U(x)$ (resp. $(0, T) \times U(x))$ for all $x \in \Omega$, where $U(x)$ is an open ball centered at x in Ω.

[^0]2. Accessibility theorem. Let k be a positive integer. Let $T>0$ and $y_{0 i} \in \boldsymbol{R}^{n_{i}}(1 \leq i \leq k)$ and let Ω_{i} be an open set in $\boldsymbol{R}^{n_{i}}$ with $y_{0 i} \in \Omega_{i}$. Let $A=A_{i}$ be as above with $\Omega=\Omega_{i}$ and W_{i} be a dense subset of A_{i}. Suppose that $F=F_{i}: W_{i} \rightarrow \boldsymbol{R}$ satisfies
\[

$$
\begin{array}{lll}
F_{*}(t, x, r, p, X)>-\infty & \text { for } & p \neq 0, r \in \boldsymbol{R}, X \in \boldsymbol{S}^{n} \tag{3}\\
F_{*}(t, x, r, 0, O)>-\infty & \text { for } & r \in \boldsymbol{R}
\end{array}
$$
\]

with $n=n_{i}$ and $t=T$ for all x near $y_{0 i}(1 \leq i \leq k)$. Let u_{i} be a subsolution of (1) with $F=F_{i}$ on $Q_{i}=(0, T] \times \Omega_{i}$. Then the function $w(t, z)=\sum_{i=1}^{k} u_{i}^{*}\left(t, z_{i}\right)$ is left accessible at $\left(T, y_{0}\right)$, where $z=\left(z_{1}, \cdots, z_{k}\right), z_{i} \in \Omega_{i}$ and $y_{0}=\left(y_{01}, \cdots, y_{0 k}\right)$.

Example. The assumption (3) cannot be dropped even for $k=1$. Indeed, we observe that $u(t, x)=0$ for $t<T$ and $=1$ for $t=T$ is a subsolution of (1) with $F=F(p, X)=-($ trace $X) /|p|$ in $(0, T] \times R^{n}$, since $F_{*}(0, O)=-\infty$ and F is degenerate elliptic, i.e. $F(p, X) \leq F(p, Y)$ if $X \geq Y$ for usual ordering of \boldsymbol{S}^{n}. Clearly u is not left accessible at (T, y_{0}) for any $y_{0} \in \boldsymbol{R}^{n}$.
3. Lemma. Let $\Phi(s, z)<+\infty$ be an upper semicontinuous (u.s.c) function on $Z=(\tau, T]^{k} \times D$, where D is a bounded open set in \boldsymbol{R}^{N} and $\tau<T$. For $\delta>0$ let $\left(t_{\delta}, z_{\delta}\right)$ be a maximizer of

$$
\begin{equation*}
\Phi_{\delta}(s, z)=\Phi(s, z)-\sum_{i=2}^{k}\left(s_{1}-s_{i}\right)^{2} / \delta, \quad s=\left(s_{1}, \cdots, s_{k}\right) \tag{4}
\end{equation*}
$$

over \bar{Z}. Suppose that $\varphi(t, z)=\Phi(t, \cdots, t, z)$ attains its strict maximum over $[\tau, T] \times \bar{D}$ at $\left(T, z_{0}\right), z_{0} \in D$. Then each i-th component $t_{\delta i}$ of t_{δ} converges to T and z_{δ} converges to z_{0} as $\delta \rightarrow 0$, where $1 \leq i \leq k$. Moreover

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \Phi_{\delta}\left(t_{\delta}, z_{\delta}\right)=\lim _{\delta \rightarrow 0} \Phi\left(t_{\delta}, z_{\delta}\right)=\varphi\left(T, z_{0}\right) . \tag{5}
\end{equation*}
$$

Proof. Since $\Phi_{\dot{\delta}}$ is maximized at $\left(t_{\delta}, z_{\dot{\delta}}\right)$, we see

$$
\Phi\left(t_{i}, z_{0}\right)-\sum_{i=2}^{k}\left(t_{01}-t_{\left.\partial_{0}\right)^{2}} / \delta \geq \Phi\left(T, \cdots, T, z_{0}\right)=\varphi\left(T, z_{0}\right) .\right.
$$

This implies that $\sum_{i=2}^{k}\left(t_{\delta 1}-t_{\delta i}\right)^{2} / \delta$ has an upper bound $\sup _{Z} \Phi-\varphi\left(T, z_{0}\right)$ independent of δ. In particular $t_{\partial 1}-t_{\partial i} \rightarrow 0$ as $\delta \rightarrow 0$ for $2 \leq i \leq k$.

Suppose that $t_{\delta i} \rightarrow t_{i}^{\prime}$ and $z_{\delta} \rightarrow z^{\prime}$ by taking a subsequence $\delta=\delta_{j} \rightarrow 0$. Since $t_{\delta 1}-t_{\delta i} \rightarrow 0$, we see $t_{i}^{\prime}=t_{1}^{\prime}$ for $2 \leq i \leq k$. From $\Phi_{\delta} \leq \Phi$ it follows that

$$
\begin{equation*}
\varphi\left(T, z_{0}\right)=\Phi_{\delta}\left(T, \cdots, T, z_{0}\right) \leq \Phi_{\dot{\delta}}\left(t_{j}, z_{j}\right) \leq \Phi\left(t_{\partial}, z_{j}\right) . \tag{6}
\end{equation*}
$$

Letting $\delta_{j} \rightarrow 0$ yields $\varphi\left(T, z_{0}\right) \leq \varphi\left(t_{1}^{\prime}, z^{\prime}\right)$ since Φ is u.s.c. This implies $t_{1}^{\prime}=T$ and $z^{\prime}=z_{0}$ since (T, z_{0}) is the strict maximizer of $\varphi(t, z)$. The inequality (6) now yields (5) since Φ is u.s.c. The proof is now complete by the compactness of \bar{Z}.
4. Proof of the accessibility theorem. We set

$$
W(s, z)=W\left(s_{1}, \cdots, s_{k}, z\right)=\sum_{i=1}^{k} u_{i}^{*}\left(s_{i}, z_{i}\right), \quad s=\left(s_{1}, \cdots, s_{k}\right)
$$

so that $W(t, \cdots, t, z)=w(t, z)$. Suppose that the conclusion were false. Then there would exist an open ball D_{i} in Ω_{i} centered at $y_{0 i}$ and $\varepsilon>0$ such that

$$
a:=w\left(T, y_{0}\right)-\sup _{U} w(t, z)>0
$$

with $U=(T-\varepsilon, T) \times \bar{D}, D=D_{1} \times D_{2} \times \cdots \times D_{k}$. We may assme that (3) holds for F_{i} at $t=T$ for all $x \in D_{i}$ by taking D_{i} smaller. We shall fix ε and D
and take K large so that $w(T, z)-\sum_{i=1}^{k} K\left|z_{i}-y_{0 i}\right|^{4}$ attains a maximum M at $z=z_{0} \in D$ over \bar{D}. The function

$$
w(T, z)-\sum_{i=1}^{k} P_{i}\left(z_{i}\right) \quad \text { with } \quad P_{i}\left(z_{i}\right)=K\left|z_{i}-y_{0 i}\right|^{4}+\left|z_{i}-z_{0 i}\right|^{4}
$$

now attains a strict maximum M at $z_{0}=\left(z_{01}, \cdots, z_{0 k}\right)$ over \bar{D}. We shall fix K.
We next introduce a function of t whose derivative at $t=T$ is very large. Let $\beta \in C^{2}\left(-\infty, 0\right.$] satisfy $0 \leq \beta \leq 1$ and $\beta(0)=\beta^{\prime}(0)=1$. For $L>1$ we set $\beta_{L}(t)=\alpha \beta(L(t-T)) / 2$. We now define Φ by

$$
\Phi(s, z)=W(s, z)-\Xi(s, z) \quad \text { with } \quad \Xi(s, z)=\sum_{i=1}^{k} P_{i}\left(z_{i}\right)+\beta_{L}\left(s_{1}\right) .
$$

By the choice of β_{L} the function $\varphi(t, z)=\Phi(t, \cdots, t, z)$ would attain its strict maximum $M-a / 2$ at (T, z_{0}) over \bar{U}. Let Φ_{δ} be as in (4), i.e.

$$
\Phi_{\delta}(s, z)=W(s, z)-\Xi_{\delta}(s, z) \quad \text { with } \quad \Xi_{\delta}(s, z)=\Xi(s, z)+\sum_{i=2}^{k}\left(s_{1}-s_{i}\right)^{2} / \delta
$$

By Lemma 3 a maximizer $\left(t_{\delta}, z_{\delta}\right)$ of $\Phi_{\dot{\delta}}$ over $[T-\varepsilon, T]^{k} \times \bar{D}$ would converge to $\left(T, \cdots, T, z_{0}\right)$ as $\delta \rightarrow 0$.

Since u_{i} is a subsolution of (1) in $Q_{i}^{\prime}=(T-\varepsilon, T) \times D_{i}$ and since

$$
u_{i}(t, x)-E_{\delta}\left(t_{\delta 1}, \cdots, t_{\delta i-1}, t, t_{\delta i+1}, \cdots, t_{k}, z_{\delta 1}, \cdots, z_{\delta i-1}, x, z_{\delta i+1}, \cdots, z_{\delta k}\right)
$$

attains its maximum at $\left(t_{\partial i}, z_{\bar{\delta} i}\right)$ over Q_{i}^{\prime} (as a function of (t, x)), the inequality (2) yields
$\left(7_{i}\right) \quad b_{i}(\delta)+f_{i}(\delta) \leq 0 \quad$ with $\quad f_{i}(\delta)=F_{i *}\left(t_{\delta i}, z_{\delta i}, u_{i}^{*}\left(t_{\delta i}, z_{\delta i}\right), \nabla P_{i}\left(z_{\delta i}\right), \nabla^{2} P\left(z_{i i}\right)\right)$.
Here, $b_{1}(\delta)=\left(\beta_{L}\right)_{t}\left(t_{\delta 1}\right)+2 \sum_{j=2}^{k}\left(t_{\delta 1}-t_{\delta j}\right) / \delta$ and $b_{i}(\delta)=-2\left(t_{\partial 1}-t_{\delta i}\right) / \delta$ for $2 \leq i \leq k$. Adding (7_{i}) from $i=1$ to k yields

$$
\left(\beta_{L}\right)_{t}\left(t_{\partial 1}\right)+\sum_{i=1}^{k} f_{i}(\delta) \leq 0
$$

Since $t_{\partial i} \rightarrow T$ and $z_{\dot{\delta}} \rightarrow z_{0}$, letting $\delta \rightarrow 0$ would yield

$$
\begin{equation*}
L a / 2+\sum_{i=1}^{k} F_{i *}\left(T, z_{0 i}, u_{i}^{*}\left(T, z_{0 i}\right), \nabla P_{i}\left(z_{0 i}\right), \nabla^{2} P_{i}\left(z_{0 i}\right)\right) \leqq 0 \tag{8}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} u_{i}^{*}\left(t_{\delta i}, z_{\delta i}\right)=u_{i}^{*}\left(T, z_{0 i}\right) \quad(1 \leqq i \leqq k) . \tag{9}
\end{equation*}
$$

Since $\nabla P_{i}\left(z_{0 i}\right)=0$ implies $\nabla^{2} P_{i}\left(z_{0 i}\right)=0$ and since z_{0} is independent of L, the inequality (8) contradicts (3) for large L. Thus w is left accessible at (T, y_{0}).

It remains to prove (9). Since u_{i}^{*} is u.s.c. and Ξ is continuous, (5) yields (9).
5. Comparison theorem up to terminal time. Suppose that $F=$ $F(t, r, p, X)$ is continuous and degenerate elliptic on $J_{0}=(0, T] \times \boldsymbol{R} \times\left(\boldsymbol{R}^{n} \backslash\{0\}\right)$ $\times \boldsymbol{S}^{n}$. For each $M>0$ there is a constant $c_{0}=c_{0}(n, T, M)$ such that $r_{\mapsto} \rightarrow F$ $(t, r, p, X)+c_{0} r$ is nondecreasing for all $(t, r, p, X) \in J_{0}$ with $|r| \leq M$. Suppose that $-\infty<F_{*}(t, r, 0, O)=F^{*}(t, r, 0, O)<\infty$. Let u and v be respectively, sub- and supersolutions of (1) in Q with bounded Ω. If $u^{*} \leq v_{*}$ on the parabolic boundary $\partial_{p} Q=\{0\} \times \Omega \cup[0, T] \times \partial \Omega$, then $u^{*} \leq v_{*}$ on Q.

This is proved in [1, Theorem 4.1] by extending Ishii's lemma ([8, Proposition IV. 1], [1, Proposition 3.1]) up to $t=T$ [1, Lemma 3.1]. It turns out that $u^{*} \leq v_{*}$ for $t<T$ can be proved just by using original Ishii's lemma [1, Proposition 3.2] if we modify [1, Lemma 4.3]. To get $u^{*} \leq v_{*}$ up to
$t=T$ we need to apply the Accessibility theorem. We just indicate how to alter the proofs of [1, Lemma 4.3 and Theorem 4.1].

In the statement of [1, Lemma 4.3] we should replace ψ by

$$
\psi_{\alpha}(t, x, y)=\phi(x-y)+\alpha /(T-t)
$$

for arbitrary fixed $\alpha>0$. One can carry out the proof of Case 1 with ψ_{α} by using [1, Proposition 3.2] since $\bar{t}<T$ and $\partial \psi_{\alpha} / \partial t>0$. In Case 2 we should replace $\tilde{\psi}$ and Φ_{η} by

$$
\begin{aligned}
& \tilde{\psi}(t, x, y)=\psi_{a}(t, x, y)+(\bar{t}-t)^{2} \\
& \Phi_{\eta}(t, x, y)=w(t, x, y)-\phi(x-y-\eta)-(\bar{t}-t)^{2}-\alpha /(T-t)
\end{aligned}
$$

respectively. The Case 2a should be
'For some $\kappa>0$ there is $\left(t_{\eta}, x_{\eta}, y_{\eta}\right) \in Q_{T}$ with $x_{\eta}-y_{\eta}=\eta$ such that

$$
\Phi_{\eta}\left(t_{\eta}, x_{\eta}, y_{\eta}\right)=\sup \left\{\Phi_{\eta}(t, x, y) ; x, y \in \Omega,|x-y|<\kappa, t \in(0, T]\right\}
$$

for all $\eta \in \boldsymbol{R}^{n}$ with $|\eta|<\kappa$.'
In the proof for Case 2a we replace f by

$$
f(\eta)=\sup \left\{w\left(t_{\eta}, x, y\right)-\left(\bar{t}-t_{\eta}\right)^{2}-\alpha /\left(T-t_{\eta}\right) ; x, y \in \Omega, x-y=\eta\right\} .
$$

We argue in the same way as in the original proof and obtain

$$
\sup \left\{w(t, x, y)-(\bar{t}-t)^{2}-\alpha /(T-t) ;|x-y|<\kappa, t \in(0, T]\right\}=w(\bar{t}, \bar{x}, \bar{x})-\alpha /(T-\bar{t})
$$

in place of (4.9). Since $\bar{t}<T$, we apply [1, Proposition 3.2] to complete the proof for Case 2a. Again we should note $\partial \psi_{\alpha} / \partial t>0$ to get (4.12b). The remaining Case 2 b can be treated parallely if we replace $Q_{\bar{t}}$ by Q_{T}. We note that the maximum of Φ_{0} is not attained at $t \neq \bar{t}(<T)$ because of the term $(\bar{t}-t)^{2}$ in $\tilde{\psi}$. We thus observe that [1, Lemma 4.3] with ψ_{α} holds for all $\alpha>0$.

In the proof of [1, Theorem 4.1] one should replace ψ by ψ_{α}. (All ϕ after the definition of w^{ε} were misprints of ψ so it should also be replaced by ψ_{α}.) We argue in the same way as in the original proof with ψ replaced by ψ_{α} and end up with $w^{\varepsilon} \leq \psi_{\alpha}$ or

$$
u(t, x)-v(t, y) \leq a_{\lambda}\left(|x-y|^{2}+\delta\right)^{1 / 2}+b_{\lambda}+\alpha /(T-t) \quad \text { on } \quad Q_{T} .
$$

Sending $\delta \rightarrow 0, \alpha \rightarrow 0$ and taking infimum for $\lambda \in A$ we obtain

$$
\begin{equation*}
u(t, x)-v(t, y) \leq m(|x-y|) \quad \text { for } \quad t<T, x, y \in \Omega \tag{10}
\end{equation*}
$$

where m is some modulus.
Since u and $-v$ are subsolutions of (1) with some F satisfying (3) on Q, the Accessibility theorem with $k=2$ implies that $u(t, x)-v(t, y)$ is left accessible at (T, x, y), $x, y \in \Omega$. We now conclude that (10) holds up to $t=T$ which yields $u^{*} \leq v_{*}$ on Q.

Remark. In [5] the comparison theorem is extended to more general equations on arbitrary domains and the proof is simplified. However, since [5, Proposition 2.4] actually needs $t<T$ in the definition of α, the comparison [5, (2.2) and (4.2)] holds only for $t<T$ from the proof given there. Fortunately one applies the Accessibility theorem to get [5, (2.2) and (4.2)] up to $t=T$ so main results in [5] are correct as stated.
6. Ishii's lemma. We note that the conclusion of [1, Lemma 3.1] is correct if we assume that F and $-G(t, x,-r,-p,-X)$ satisfy (3) at $t=T$ for all $x \in \Omega$. Indeed, we may assume that U_{T} is bounded and that

$$
\begin{equation*}
\Phi(t, x, y)=u(t, x)-v(t, y)-\phi(t, x, y) \tag{11}
\end{equation*}
$$

attains its strict maximum over \bar{U}_{T} as in [1, p. 763]. For $\alpha>0$ we introduce $\Phi_{\alpha}=\Phi-\phi_{\alpha}$ with $\phi_{\alpha}=\phi+\alpha /(T-t)$ which is different from that in [1, p. 763]. Let $\left(t_{\alpha}, x_{\alpha}, y_{\alpha}\right)$ be a maximizer of Φ_{α} on \bar{U}_{T} so that $t_{\alpha}<T$. Suppose that $t_{\alpha} \rightarrow t^{\prime}, x_{\alpha} \rightarrow x^{\prime}, y_{\alpha} \rightarrow y^{\prime}$ by taking a subsequence $\alpha=\alpha_{j} \rightarrow 0$. For $t<T$ we observe

$$
\begin{aligned}
\Phi(t, x, y) & =\lim _{\alpha \rightarrow 0} \Phi_{\alpha}(t, x, y) \leq \liminf _{\alpha \rightarrow 0} \Phi_{\alpha}\left(t_{\alpha}, x_{\alpha}, y_{\alpha}\right) \leq \liminf _{\alpha \sim 0} \Phi\left(t_{\alpha}, x_{\alpha}, y_{\alpha}\right) \\
& \leq \lim _{\alpha \rightarrow 0} \sup \Phi\left(t_{\alpha}, x_{\alpha}, y_{\alpha}\right) \leq \Phi\left(t^{\prime}, x^{\prime}, y^{\prime}\right) \leq \Phi(T, \bar{x}, \bar{y})
\end{aligned}
$$

since $\Phi_{\alpha} \leq \Phi$ and Φ is u.s.c. Since $u(t, x)-v(t, y)$ is left accessible at (T, \bar{x}, \bar{y}), this implies

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} \Phi\left(t_{\alpha}, x_{\alpha}, y_{\alpha}\right)=\Phi(T, \bar{x}, \bar{y}), \quad x^{\prime}=\bar{x}, y^{\prime}=\bar{y} \tag{12}
\end{equation*}
$$

Since u and $-v$ are u.s.c., (12) yields

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} u\left(t_{\alpha}, x_{\alpha}\right)=u(T, \bar{x}), \quad \lim _{\alpha \rightarrow 0} v\left(t_{\alpha}, y_{\alpha}\right)=v(T, \bar{y}) . \tag{13}
\end{equation*}
$$

We apply Ishii's lemma [1, Proposition 3.2] at $\left(t_{\alpha}, x_{\alpha}, y_{\alpha}\right)$ and send $\alpha \rightarrow 0$ to get the desired result [1, (3.4a) and (3.4b)] since $\partial \phi_{\alpha} / \partial t \geq \partial \phi / \partial t$.

The proof given in [1, p. 763] seems to be wrong because there may not exist the barrier m and the convergence in [1, p. 764, line 3] is not clear. However, as shown above [1, Lemma 3.1] is correct with extra assumptions of type (3) which causes no problem for the application in [1, Lemma 4.3].

By the way the proof of [1, Proposition 3.2] contains a minor technical error which can be easily fixed. In [1, p. 762, line 9-3 from below], the property that $F(t, x, r, p, X)$ and $G(t, x, r, p, X)$ are non increasing in r is used although it is not assumed in [1, Proposition 3.2]. This extra assumption is unnecessary because

$$
\begin{equation*}
\lim _{j \rightarrow \infty} u^{\varepsilon}\left(t_{j}, x_{j}\right)=u(\bar{t}, \bar{x}), \quad \lim _{j \rightarrow \infty} v_{\varepsilon_{j}}\left(t_{j}, y_{j}\right)=v(\bar{t}, \bar{y}) \tag{14}
\end{equation*}
$$

with $t_{j}=t_{k_{j}}^{\epsilon_{j}}, x_{j}=x_{k_{j}}^{s_{j}}, \cdots$, where $\left\{\varepsilon_{j}\right\},\left\{k_{j}\right\}$ are taken as in [1, p. 762, line 8]. We may assume $t_{j} \rightarrow \bar{t}, x_{j} \rightarrow \bar{x}, y_{j} \rightarrow \bar{y}$. As in the proof of (5), one can prove

$$
\Phi(\bar{t}, \bar{x}, \bar{y})=\lim _{j \rightarrow \infty} \Phi_{\varepsilon_{j}, k_{j}}\left(t_{j}, x_{j}, y_{j}\right)
$$

with $\Phi_{\varepsilon, k}(t, x, y)=\Phi(t, x, y)-l_{k}^{\varepsilon} t-p_{k}^{\varepsilon} \cdot x+q_{k}^{\epsilon} \cdot y$ since $u \leq u^{\varepsilon}$ and $v \geq v_{\varepsilon}$. This yields (14) since u and $-v$ are u.s.c. We thus conclude that [1, Proposition 3.2] is correct as it stated.
7. Extension theorem. Suppose that u is a subsolution of (1) in Q_{0}. Then u^{*} is a subsolution of (1) in Q.

The statement in [1, Lemma 5.7] is incorrect and should be replaced by this theorem. When u is continuous in Q this is proved in [9].

Proof. We may assume that Ω is bounded and that $u^{*}-\psi$ attains its strict maximum at (T, x_{0}) over Q with $\psi \in C^{2}(Q)$. Let $\left(t_{\alpha}, x_{\alpha}\right)$ be a maximizer of $u^{*}-\psi_{\alpha}$ with $\psi_{\alpha}=\psi+\alpha /(T-t)$ for $\alpha>0$ so that $t_{\alpha}<T$. Since u^{*} is left accessible at (T, x_{0}) we observe $t_{\alpha} \rightarrow T, x_{\alpha} \rightarrow x_{0}$ and $u^{*}\left(T, x_{0}\right)=\lim _{\alpha \rightarrow 0} u^{*}\left(t_{\alpha}, x_{\alpha}\right)$ (cf. (12), (13)). Letting $\alpha \rightarrow 0$ in (2) with $\psi=\psi_{\alpha}, t=t_{\alpha}$ and $x=x_{\alpha}$ we get (2)
with ψ at $\left(T, x_{0}\right)$ since $\partial \psi_{\alpha} / \partial t>\partial \psi / \partial t$.
8. Localization lemma. (i) Suppose that u is a subsolution of (1) in Q_{0}. Then for $T^{\prime \prime}<T$, u is a subsolution of (1) in $Q^{\prime}=\left(0, T^{\prime}\right] \times \Omega$. (ii) Suppose that v is a subsolution of (1) in Q. Then v is a subsolution of (1) in ($0, T^{\prime}$) $\times \Omega$ for $T^{\prime} \leq T$.

Proof. We may assume that Ω is bounded. Suppose that $u^{*}-\psi$ attains its strict maximum at $\left(t_{0}, x_{0}\right)$ over Q^{\prime} for $\psi \in C^{2}\left(Q^{\prime}\right)$. Extend ψ to $\psi \in C^{2}(Q)$ and set $\psi_{\delta}=\psi+g(t) / \delta$ with $\delta>0$ where $g=0$ for $t<t_{0}$ and $g=\left(t-t_{0}\right)^{3}$ for $t \geq t_{0}$, so that $g \in C^{2}(\boldsymbol{R})$. Let $\left(t_{\delta}, x_{j}\right)$ be a maximizer of $u^{*}-\psi_{\delta}$ over \bar{Q}, so that $t_{\delta} \geq t_{0}$. Then

$$
\begin{align*}
& \left(u^{*}-\psi\right)\left(t_{0}, x_{0}\right)=\left(u^{*}-\psi_{\delta}\right)\left(t_{0}, x_{0}\right) \leq\left(u^{*}-\psi_{\delta}\right)\left(t_{\delta}, x_{\delta}\right) \leq\left(u^{*}-\psi\right)\left(t_{\delta}, x_{\delta}\right) \tag{15}\\
& \quad \text { or } g\left(t_{\delta}\right) / \delta+\left(u^{*}-\psi\right)\left(t_{0}, x_{0}\right) \leq\left(u^{*}-\psi\right)\left(t_{\delta}, x_{\delta}\right)
\end{align*}
$$

This implies that $g\left(t_{\bar{\delta}}\right) / \delta$ is bounded as $\delta \rightarrow 0$. Since $t_{\delta} \geq t_{0}$ we now observe $t_{\delta} \rightarrow t_{0}$. Since u^{*} is u.s.c. and $t_{j} \rightarrow t_{0}$, sending $\delta \rightarrow 0$ in (15) yields $x_{j} \rightarrow x_{0}$. This argument also yields $\lim _{\dot{j} 10} u^{*}\left(t_{\delta}, x_{\delta}\right)=u^{*}\left(t_{0}, x_{0}\right)$. Sending δ to zero in (2) with $\psi=\psi_{\delta}$ at $\left(t_{i}, x_{\delta}\right)$ yields (2) with ψ at $\left(t_{0}, x_{0}\right)$ since $\partial \psi_{\delta} / \partial t \geq \partial \psi / \partial t$. This completes the proof of (i). The part (ii) can be proved easily.

The Accessibility theorem and the Localization lemma yield:
9. Corollary. Suppose that u is a subsolution of (1) in Q. If F satisfies (3) for $(t, x) \in Q$, then u^{*} is left accessible at each $(t, x) \in Q$.
10. Miscellaneous remarks. We note that [1, Theorem 5.6] can be proved without using [1, Lemma 5.7] and sup convolutions. A direct proof is found in [2]. We also note that one can correct the proof of [1, Theorem 5.6] given in [1] if we use Theorems 2 and 7 ; we need to assume (3) at $t=T$ for all $x \in \Omega$ in [1, Theorem 5.6].

By the way the equation [1, (1.6) or (5.14)] does not follow from [6]. The correct one is found in [4]. In [2] we actually need to assume a uniform bound of the gradient of T in (1.6) and that of ω in (2.13) to apply comparison results in [5].

References

[1] Y.-G. Chen, Y. Giga, and S. Goto: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential Geometry, 33, 749786 (1991) (announcement: Proc. Japan Acad., 65A, 207-210 (1989)).
[2] --: Analysis toward snow crystal growth. Functional Analysis and Related Topics (ed. S. Koshi). Sapporo 1990, World Scientific, pp. 43-57 (1991).
[3] M. G. Crandall and R. Newcomb: Viscosity solutions of Hamilton-Jacobi equations at the boundary. Proc. Amer. Math. Soc., 94, 283-290 (1985).
[4] Y. Giga and S. Goto: Motion of hypersurfaces and geometric equations. J. Math. Soc. Japan, 44 (1992) (to appear).
[5] Y. Giga et al.: Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J., 40, 443-470 (1991).
[6] M. Gurtin: Towards a nonequilibrium thermodynamics of two-phase materials. Arch. Rational Mech. Anal., 100, 275-312 (1988).
[7] H. Ishii: A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations. Ann. Sc. Norm. Sup. Pisa, (IV) 16, 105-135 (1989).
[8] H. Ishii and P.-L. Lions: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differential Equations, 83, 26-78 (1990).
[9] D. Nunziante: Uniqueness of viscosity solutions of fully nonlinear second order parabolic equations with noncontinuous time-dependence. Differential Integral Equations, 3, 77-91 (1990).

[^0]: *) On leave from Nankai Institute of Mathematics, Tianjin, China.
 *) Department of Mathematics, Hokkaido University.
 ***) Department of Applied Science, Faculty of Engineering, Kyushu University.

