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81. Remarks on Viscosity Solutions for Evolution Equations

By Yun-Gang CHEN,*) Yoshikazu GIGA,**) and
Shun’ichi GOTO***)

(Communicated by Kunihiko KODAIRA, M. J. A., Dec. 12, 1991)

1o Introduction. We consider a degenerate parabolic equation
1 ) u/t/F(t, x, u, Vu, Vu) O,

where V stands or the spatial derivatives. We are concerned with a
viscosity subsolution which needs not to be continuous. We say a unction
u(t, x) defined in a parabolic neighborhood of (to, x0) is left accessible at
(to, x0) i there are sequences x-Xo, t--to with t< to such that lim u(t, x)
=u(t0, x0). Our goal is to show that a viscosity subsolution is left accessible
at each (parabolic) interior point of the domain o.f definition o.r a wide
class of F. We also clarify the relation between viscocity subsolutions
defined on time interval (0, T) and those on (0, T]. Similar problems are
studied in other contexts by Crandall and Newcomb [3] and by Ishii [7].
We thank Frofessor Hitoshi Ishii for pointing out these references.

There are technical errors in the proo of Ishii’s lemma up to the
terminal time in our previous work [1, Lemma 3.1 and Proposition 3.2].
If we note left accessibility, the proof can be easily fixed. We take this
opportunity to correct technical errors in [1] somewhat related to let ac-
cessibility. We thank Professor Joseph Fu or pointing out a couple of
errors in the proo of [1, Lemma 3.1 and Proposition 3.2].

For h" L--R (LcR) we associate its lower (upper) semicontinuous
relaxation h,(h*)’Y--+=RJ{+_c} defined by

h,(z)=limin{h(y) Iz-yl<e, y e L), z e L
0

and h*(z)=-(-h).(z). Let 9 be an open set in R. For T0 let W be a
dense subset o.f A=(0, T]9RRS, where S denotes the space of
nn real symmetric matrices. Suppose that F=F(t, x,r, p,X) is a real
valued function defined in W. Since W is dense in A, F* and F." A--/
are well-defined. Any unction u Q--R (resp. Qo--+R) is called a iscosity
subsolution of (1) in Q=(O, T] [2 (resp. Qo-(O, T) [2) i u* c on Q and
if, whenever e C2(Q)(resp. C2(Qo)), (t,x)e Q (resp. Q0)and (u*-)(t,x)=
max(u*-) (resp. max0(u*-)) it holds that
( 2 ) (t, x)+F,(t, x, u*(t, x), V(t, x), V(t, x))_O,
where t=3/3t. We shall suppress the word viscocity. One can easily
observe that u is a subsolution o.f (1) in Q (resp. Q0) i and only i u is a
subsolution o (1) in (0, T] U(x)(resp. (0, T) U(x)) for all x e 9, where
U(x) is an open ball centered at x in/2.
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2. Accessibility theorem. Let k be a positive integer. Let TO
and Yo e R (l_i_k) and let be an open set in R with Yo e . Let
A--A be as above with -f2 and W be a dense subset of A. Suppose
that F--F W-+R satisfies
(3) F.(t,x,r,p,X)- for p:O, reR, XeS

F.(t,x,r,O,O)-c for reR
with n=n and t--T for all x near Yo (l_i_k). Let u be a subsolution of
(1) with F--F on Q--(O, T] . Then the function w(t, z)-,u* (t, z)
is left accessible at (T, Yo), where z-(z, ..., z), z e and Yo--(Yo, "", Yo).

Example. The assumption (3) cannot be dropped even for k---1. In-
deed, we observe that u(t, x)--O for t(T and -1 for t-T is a subsolution
of (1) with F--F(p,X)-----(trace X)/lp in (0, T]R, since F.(O, O)=--c
and F is degenerate elliptic, i.e. F(p, X)F(p, Y) if X_Y for usual order-
ing of S. Clearly u is not left accessible at (T, Y0) fo.r any Y0 e R.

3. Lemma. Let qb(s,z) +c be an upper semicontinuous (u.s.c)
function on Z=(r, T] D, where D is a bounded open set in R and T.
For0 let (t, z) be a maximizer of
( 4 ) (s, z)--(s, z)-- (s-- s)/, s--(s, ..., s)

i=2

over Z. Suppose that (t, z)-(t, ., t, z) attains its strict maximum over
[, T] at (T, Zo), zo D. Then each i-th component t of converges to
T and z converges to Zo as -0, where l_i_k. Moreover
( 5 ) lim (t, z) lim (t, z)=(T, z0).

-,0 --.0

Proof. Since is maximized at (t, z), we see

(t, z)- (t--t)/_(T, ..., T, z0)= (T, z0).
i=2

This implies that ;(t,--t)/ has aa upper bound sup --(T z0) inde-
pendent of/t. In particular t-t-0 as -+0 for 2___i_ k.

Suppose that t--t and z--z’ by taking a subsequence ---/0. Since

t-toO, we see t=t for 2<ik. From

_
it follows that

( 6 ) (T, z0)= (T, ..., T, Zo)_q(t, z)_q(t, z).
Letting 0 yields (T, Zo)_(t,z’) since is u.s.c. This implies t;=T
and z’=zo since (T, z0) is the strict maximizer of (t, z). The inequality (6)
now yields (5) since is u.s.c. The proof is now complete by the compact-
hess of Z.

4. Proof of the accessibility theorem. We set

W(s, z)= W(s, ..., s, z)= u* (s, z), s (s, ..., s)
i=l

so that W(t,...,t,z)=w(t,z). Suppose that the conclusion were false.
lhen there would exist an open ball D in 2 centered at Y0 and :>0 such
that

a" =w(T, y0)-- sup w(t, z)O
U

with U (T-- e, T) D, D D D D. We may assme that (3) holds
for F at t= T for all x e D by taking D smaller. We shall fix and D
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and take K large so that w(T, z)- ,= KIz--yol attains a maximum M at
z=zo e D over D. The function

w(T,z)--P(z) with P(z)=KIz--yol+]z--Zol
i=l

now attains a strict maximum M at z0 (z0, ., z0) over D. We shall fix K.
We next introduce a function of t whose derivative at t--T is very

large. Let/9 e C(-oo, 0] satisfy 0_/_1 and (0)=fl’(0)=l. For LI we
set fl(t)=afl(L(t--T))/2. We now define q by

(s, z) W(s, z)- (s, z) with (s, z) P(z)+fl(Sl).
i=l

By the choice of fl the unction (t, z)= q(t, ..., t, z) would attain its strict
maximum M-a/2 at (T, z0) over . Let q be as in (4), i.e.

k

q(s, z)= W(s, z)- (s, z) with (s, z) (s, z) + (s,-- s)/.
i=2

By Lemma 3 a maximizer (t, z) of q over [T-- , T] D would converge to
(T, ..., T, z0) as --0.

Since is a subsolution of (1) in Q=(T-s, T)D and since
u(t, x)-- (t, ., t_,, t, +,, ., t, z,, ., z_,, x, z +, .., z)

attains its maximum at (t,, z) over Q (as a function of (t, x)), the inequality
(2) yields
(7,) b,()/f,()_0 with f()=F.(t,, z, u* (t, z,), VP,(z,), VP(z,)).
Here, b()=(fl,)(t)+2 __(t-t)/ and b()=-2(tx-t)/ for
Adding (7,) from i--1 to k yields

()t(t,) + f,() 0.
i--1

Since $,-+T and z-zo, letting -0 would yield

( 8 ) La/2-, F**(T, Zo,, u*(T, Zo,), VP,(zo,), VP,(zo,))O
i=l

provided that
( 9 ) lim u*(, z)=u*(T, Zo,) (1_i<:/).

-0

Since VP,(zo,)--O implies VP,(zo,)--O and since z0 is independent o. L, the
inequality (8) contradicts (3) or large L. Thus w is let accessible at (T, Y0).

It remains to prove (9). Since u* is u.s.e, and is continuous, (5)
yields (9).

5. Comparison theorem up to terminal time. Suppose ha$ F--
F(t, r, p, X) is continuous and degenerate elliptic on J0=(0, T] R(R\{0})
S. For each MO there is a constant co=co(n, T,M) such that
(t, r, p, X)+Cot is nondecreasing for all (t, r, p, X) e Jo with IriS_ M. Suppose
that oo F,(t, r, O, O)=F*(t, r, O, 0) oo. Let u and v be respectively,
sub-and supersolutions of (1)in Q with bounded [2. If u*_v, on the
parabolic boundary pQ={0}9 kJ[0, T] 2, then u* _v. on Q.

This is proved in [1, Theorem 4.1] by extending Ishii’s lemma ([8,
Proposition IV. 1], [1, Proposition 3.1]) up to t-- T [1, Lemma 3.1]. It turns
out that u*v. for t T can be pro.ved just by using original Ishii’s lemma
[1, Proposition 3.2] if we modify [1, Lemma 4.3]. To get u*_v, up to
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t--T we need to. apply the Accessibility theorem. We just indicate how to
alter the pro.ors of [1, Lemma 4.3 and Theorem 4.1].

In the statement of [1, Lemma 4.3] we should replace by
.(t, x, y)=(x--y)+/(T--t)

for arbitrary fixed a0. One can carry out the proof of Case 1 with . by
using [1, Proposition 3.2] since T and q,/tO. In Case 2 we should
replace 5 and 0, by

(t, x, )=(t, x, )+(- t),
,(t, x, y)-w(t, x, y)-(x-y-i)-(-tY-a/(T-t)

respectively. The Case 2a should be
’For some0 there is (t,, x,, y,) e Qr with x,-y, =] such that

qg(t, x,, y)=sup{0(t, x, y) x, y e 9, Ix-yl<, t e (0, T]}
for all ] e R with ]1<.’

In the pro.of for Case 2a we replace f by
f(i)-sup{w(t,, x, y)--(--t,)--a/(T--t,) x, y e [2, x-- y----]}.

We argue in the same way as in the o.riginal proof and obtain
sup {w(t, x, y)- (-- t)--a/(T t) Ix- y I< , t e (0, T]} w(t, , )-- a/(T-- )

in place of (4.9). Since T, we apply [1, Proposition 3.2] to. complete the
proof for Case 2a.. Again we sho.uld note ,/tO to. get (4.12b). The
remaining Case 2b can be treated parallely if we replace Q by Qr. We
note that the maximum o.f 0 is not attained at t=/=t ( T) because o.f the
term (i--t) in . We thus observe that [1, Lemma 4.3] with , holds for
all a0.

In the proof of [1, Theorem 4.1] one should replace by ,. (All after
the definition of w were misprints o.f so it should also be replaced by ,.)
We argue in the same way as in the o.riginal proof with replaced by ,
and end up. with w’

_
+. o.r

u(t, x)--v(t, y)_a(Ix--y[+)/+b-t=a/(T--t) on Qr.
Sending -+0, a-+0 and taking infimum for e A we obtain
(10) u(t, x)-v(t, y)_m(Ix-yl) fo.r t<T, x, y e 9,
where m is some modulus.

Since u and -v are subsolutions of (1) with some F satisfying (3) on
Q, the Accessibility theorem with k=2 implies that u(t, x)--v(t, y) is left

accessible at (T, x, y), x, y e g2. We now conclude that (10) holds up to t= T
which yields u*

_
v. on Q.

Remark. In [5] the comparison theorem is extended to more general

equations on arbitrary do.mains and the proof is simplified. However,
since [5, Proposition 2.4] actually needs tT in the definition o.f a, the
comparison [5, (2.2) and (4.2)] holds only for tT from the proof given

there. Fortunately one applies the Accessibility theorem to get [5, (2.2)
and (4.2)] up to t--T so main results in [5] are correct as stated.

6. Ishii’s lemma. We note that the conclusion of [1, Lemma 3.1] is

correct if we assume that F and -G(t, x, -r, -p, -X) satisfy (3) at t= T
for all x e iT. Indeed, we may assume that Ur is bounded and that
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(11) (t, x, y)--u(t, x)--v(t, y)--(t, x, y)
attains its strict maximum over Ur as in [1, p. 763]. For a0 we introduce

=- with .=+/(T-- t) which is different rom that in [1, p. 763].
Let (t., x., y.) be a maximizer of . on r so that t. T. Suppose that
tt’, x.x’, yy’ by taking a subsequence =0. For tT we
observe

(t, x, y)=lim .(t, x, y)lim inf .(t., x., y.)glim inf (t., x., y.)
a0 a0

lim sup (t., x., y.)g(’, x’, y’)g(T, , y)
a0

since .g and is u.s.c. Since u(t, x)-v(t, y) is left accessible at (T, , y),
this implies
(12) lim (, x., y.)=(T, , y), x’=,

a0

Since u and -v are u.s.c., (12) yields
(13) lim u(t., x.)=u(T, ), lim v(t., y.)=v(T, y).

aO

We apply Ishii’s lemma [1, Proposition 3.2] at (t, x, y) and send 0 to
get the desired result [1, (3.4a) and (3.4b)] since

The proof given in [1, p. 763] seems to be wrong because there may
not eist the barrier m and the convergence in [1, p. 764, line 3] is not
clear. However, as shown above [1, Lemma 3.1] is correct with extra as-
sumptions of type (3) which causes no problem for the application in [1,
Lemma 4.3].

By the way the proof of [1, Proposition 3.2] contains a minor technical
error which can be easily fixed. In [1, p. 762, line 9-3 from below], the
property that F(t, x, r, p, X) and G(t, x, r, p, X) are non increasing in r is

used although it is not assumed in [1, Proposition 3.2]. This extra assump-
tion is unnecessary because
(14) lim u(t, x)=u(, ), lim v,(t, y)=v(, y)

with t=ti, x=xi%, ..., where }, {k} are taken as in [1, p. 762, line 8].
We may assume t, x, yy. As in the proof of (5), one can prove

(, , y)=lim ,, (t, x, y)
with ,,(t,x, y)=(t,x, y)-lit-pi.x+qi.y since ugu and vv,. This

yields (14) since u and -v are u.s.c. We thus conclude that [1, Proposition
3.2] is correct as it stated.

7. Extension theorem. Suppose that u is a subsolution of (1)in Qo.
Then u* is a subsolution of (1) in Q.

The statement in [1, Lemma 5.7] is incorrect and should be replaced by
this theorem. When u is continuous in Q this is proved in [9].

Proof. We may assume that 9 is bounded and that u*- attains its
strict maximum at (T, x0) over Q with e C(Q). Let (t, x) be a maximizer
of u*- with =+/(T--t) for 0 so that tT. Since u* is left
accessible at (T, x0) we observe t.oT, x.Xo and u*(T, x0)=lim.0 u*(t., x)
(cf. (12), (13)). Letting 0 in (2)with =., t=t. and x=x. we get (2)
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with at (T, x0) since 3=lt>lt.
8. Localization lemma. (i) Suppose that u is a subsolution of (1) in

Qo. Then for T’ T, u is a subsolution of (1) in Q’ (0, T] tg. (ii) Suppose
that v is a subsolution of (1) in Q. Then v is a subsolution of (1) in (0,
tO for T’_T.

Proof. We may assume that /2 is bounded. Suppose that u*-
attains its strict maximum at (to, x0) over Q’ or e C(Q’). Extend to

e C(Q) and set =-t-g(t)/ with0where g--O for tto and g--(t-to)
for t_ to, so that g e C(R). Let (t, x) be a maximizer of u*-- over Q, so
that t_t0. Then
(15) (u*-)(to, Xo)=(u*-)(to, xo)<_(u*-)(t, x)<_(u*-)(t, x)

or g(t)//(u*-)(to, xo)_(u*-)(t, x).
This implies that g(t)/ is bounded as --0. Since tto we now observe
tto. Since u* is u.s.c, and t-+to, sending/--0 in (15) yields x-Xo. This
argument also yields limoU*(t,x)=u*(to, Xo). Sending to zero in (2)
with= at (t, x) yields (2) with at (to, x0) since 3/3t_3/3t. This
completes the proof of (i). The part (ii) can be proved easily.

The Accessibility theorem and the Localization lemma yield"
9. Corollary.. Suppose that u is a subsolution of (1)in Q. If F

satisfies (3) for (t, x) e Q, then u* is left accessible at each (t, x) e Q.
10. Miscellaneous remarks. We note that [1, Theorem 5.6] can be

proved without using [1, Lemma 5.7] and sup convolutions. A direct proof
is found in [2]. We also note that one can correct the proof f [1, Theorem
5.6] given in [1] if we use Theorems 2 and 7 we need to assume (3) at t= T
2or all x e/2 in [1, Theorem 5.6].

By the way the equation [1, (1.6) or (5.14)] does not follow from [6].
The correct one is found in [4]. In [2] we actually need to assume a uniform
bound o.f the gradient of T in (1.6) and that of w in (2.13) to apply com-
parison results in [5].
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