81. Remarks on Viscosity Solutions for Evolution Equations

By Yun-Gang CHEN,*) Yoshikazu GIGA,**) and Shun'ichi Goto***)

(Communicated by Kunihiko KODAIRA, M. J. A., Dec. 12, 1991)

1. Introduction. We consider a degenerate parabolic equation (1) $\partial u/\partial t + F(t, x, u, \nabla u, \nabla^2 u) = 0,$

where ∇ stands for the spatial derivatives. We are concerned with a viscosity subsolution which needs not to be continuous. We say a function u(t, x) defined in a parabolic neighborhood of (t_0, x_0) is left accessible at (t_0, x_0) if there are sequences $x_1 \rightarrow x_0, t_1 \rightarrow t_0$ with $t_1 < t_0$ such that $\lim_{t \to \infty} u(t_1, x_1)$ $=u(t_0, x_0)$. Our goal is to show that a viscosity subsolution is left accessible at each (parabolic) interior point of the domain of definition for a wide class of F. We also clarify the relation between viscocity subsolutions defined on time interval (0, T) and those on (0, T]. Similar problems are studied in other contexts by Crandall and Newcomb [3] and by Ishii [7]. We thank Professor Hitoshi Ishii for pointing out these references.

There are technical errors in the proof of Ishii's lemma up to the terminal time in our previous work [1, Lemma 3.1 and Proposition 3.2]. If we note left accessibility, the proof can be easily fixed. We take this opportunity to correct technical errors in [1] somewhat related to left accessibility. We thank Professor Joseph Fu for pointing out a couple of errors in the proof of [1, Lemma 3.1 and Proposition 3.2].

For $h: L \to \mathbf{R}$ ($L \subset \mathbf{R}^d$) we associate its lower (upper) semicontinuous relaxation $h_*(h^*): \overline{L} \to \widetilde{R} = R \cup \{\pm \infty\}$ defined by

 $h_*(z) = \liminf\{h(y); |z-y| < \varepsilon, y \in L\}, z \in \overline{L}$

and $h^*(z) = -(-h)_*(z)$. Let Ω be an open set in \mathbb{R}^n . For T > 0 let W be a dense subset of $A = (0, T] \times \Omega \times R \times R^n \times S^n$, where S^n denotes the space of $n \times n$ real symmetric matrices. Suppose that F = F(t, x, r, p, X) is a real valued function defined in W. Since W is dense in A, F^* and $F_*: A \to \tilde{R}$ are well-defined. Any function $u: Q \rightarrow \mathbf{R}$ (resp. $Q_0 \rightarrow \mathbf{R}$) is called a viscosity subsolution of (1) in $Q=(0,T]\times \Omega$ (resp. $Q_0=(0,T)\times \Omega$) if $u^* < \infty$ on \overline{Q} and if, whenever $\psi \in C^2(Q)$ (resp. $C^2(Q_0)$), $(t, x) \in Q$ (resp. Q_0) and $(u^* - \psi)(t, x) =$ $\max_{\varrho}(u^* - \psi)$ (resp. $\max_{\varrho_0}(u^* - \psi)$) it holds that

(2) $\psi_t(t,x) + F_*(t,x,u^*(t,x),\nabla\psi(t,x),\nabla^2\psi(t,x)) \leq 0,$

where $\psi_t = \partial \psi / \partial t$. We shall suppress the word viscocity. One can easily observe that u is a subsolution of (1) in Q (resp. Q_0) if and only if u is a subsolution of (1) in $(0,T] \times U(x)$ (resp. $(0,T) \times U(x)$) for all $x \in \Omega$, where U(x) is an open ball centered at x in Ω .

^{*)}

^{**)}

On leave from Nankai Institute of Mathematics, Tianjin, China. Department of Mathematics, Hokkaido University. Department of Applied Science, Faculty of Engineering, Kyushu University. ***)

[Vol. 67(A),

2. Accessibility theorem. Let k be a positive integer. Let T>0and $y_{0i} \in \mathbb{R}^{n_i}$ $(1 \le i \le k)$ and let Ω_i be an open set in \mathbb{R}^{n_i} with $y_{0i} \in \Omega_i$. Let $A=A_i$ be as above with $\Omega=\Omega_i$ and W_i be a dense subset of A_i . Suppose that $F=F_i: W_i \to \mathbb{R}$ satisfies

(3)
$$F_*(t, x, r, p, X) \ge -\infty \quad for \quad p \ne 0, r \in \mathbf{R}, X \in \mathbf{S}^n$$
$$F_*(t, x, r, 0, O) \ge -\infty \quad for \quad r \in \mathbf{R}$$

with $n = n_i$ and t = T for all x near y_{0i} $(1 \le i \le k)$. Let u_i be a subsolution of (1) with $F = F_i$ on $Q_i = (0, T] \times \Omega_i$. Then the function $w(t, z) = \sum_{i=1}^k u_i^*(t, z_i)$ is left accessible at (T, y_0) , where $z = (z_1, \dots, z_k)$, $z_i \in \Omega_i$ and $y_0 = (y_{01}, \dots, y_{0k})$.

Example. The assumption (3) cannot be dropped even for k=1. Indeed, we observe that u(t, x)=0 for t < T and =1 for t=T is a subsolution of (1) with $F=F(p, X)=-(\operatorname{trace} X)/|p|$ in $(0, T] \times \mathbb{R}^n$, since $F_*(0, O)=-\infty$ and F is degenerate elliptic, i.e. $F(p, X) \leq F(p, Y)$ if $X \geq Y$ for usual ordering of S^n . Clearly u is not left accessible at (T, y_0) for any $y_0 \in \mathbb{R}^n$.

3. Lemma. Let $\Phi(s, z) < +\infty$ be an upper semicontinuous (u.s.c) function on $Z = (\tau, T]^k \times D$, where D is a bounded open set in \mathbb{R}^N and $\tau < T$. For $\delta > 0$ let (t_{δ}, z_{δ}) be a maximizer of

(4)
$$\Phi_{\delta}(s,z) = \Phi(s,z) - \sum_{i=2}^{k} (s_{1}-s_{i})^{2}/\delta, \quad s = (s_{1}, \cdots, s_{k})$$

over \overline{Z} . Suppose that $\varphi(t, z) = \Phi(t, \dots, t, z)$ attains its strict maximum over $[\tau, T] \times \overline{D}$ at $(T, z_0), z_0 \in D$. Then each *i*-th component $t_{\delta i}$ of t_δ converges to T and z_δ converges to z_0 as $\delta \rightarrow 0$, where $1 \le i \le k$. Moreover (5) $\lim \Phi_\delta(t_\delta, z_\delta) = \lim \Phi(t_\delta, z_\delta) = \varphi(T, z_0)$.

Proof. Since Φ_{δ} is maximized at (t_{δ}, z_{δ}) , we see

$$\Phi(t_{\delta},z_{\delta})-\sum_{i=2}^{k}(t_{\delta 1}-t_{\delta i})^{2}/\delta \geq \Phi(T,\cdots,T,z_{0})=\varphi(T,z_{0}).$$

This implies that $\sum_{i=2}^{k} (t_{i1} - t_{ii})^2 / \delta$ has an upper bound $\sup_{\mathbb{Z}} \Phi - \varphi(T, z_0)$ independent of δ . In particular $t_{i1} - t_{ii} \rightarrow 0$ as $\delta \rightarrow 0$ for $2 \leq i \leq k$.

Suppose that $t_{\delta_i} \rightarrow t'_i$ and $z_{\delta} \rightarrow z'$ by taking a subsequence $\delta = \delta_j \rightarrow 0$. Since $t_{\delta_i} \rightarrow 0$, we see $t'_i = t'_1$ for $2 \le i \le k$. From $\Phi_{\delta} \le \Phi$ it follows that

(6) $\varphi(T, z_0) = \Phi_{\delta}(T, \cdots, T, z_0) \leq \Phi_{\delta}(t_{\delta}, z_{\delta}) \leq \Phi(t_{\delta}, z_{\delta}).$

Letting $\delta_j \to 0$ yields $\varphi(T, z_0) \leq \varphi(t'_1, z')$ since Φ is u.s.c. This implies $t'_1 = T$ and $z' = z_0$ since (T, z_0) is the strict maximizer of $\varphi(t, z)$. The inequality (6) now yields (5) since Φ is u.s.c. The proof is now complete by the compactness of \overline{Z} .

4. Proof of the accessibility theorem. We set

$$W(s, z) = W(s_1, \dots, s_k, z) = \sum_{i=1}^k u_i^*(s_i, z_i), \quad s = (s_1, \dots, s_k)$$

so that $W(t, \dots, t, z) = w(t, z)$. Suppose that the conclusion were false. Then there would exist an open ball D_i in Ω_i centered at y_{0i} and $\varepsilon > 0$ such that

$$a:=w(T, y_0) - \sup_{u} w(t, z) > 0$$

with $U = (T - \varepsilon, T) \times \overline{D}$, $D = D_1 \times D_2 \times \cdots \times D_k$. We may assume that (3) holds for F_i at t = T for all $x \in D_i$ by taking D_i smaller. We shall fix ε and D No. 10]

Viscosity Solutions

and take K large so that $w(T, z) - \sum_{i=1}^{k} K |z_i - y_{0i}|^4$ attains a maximum M at $z = z_0 \in D$ over \overline{D} . The function

$$w(T,z) - \sum_{i=1}^{k} P_i(z_i)$$
 with $P_i(z_i) = K |z_i - y_{0i}|^4 + |z_i - z_{0i}|^4$

now attains a strict maximum M at $z_0 = (z_{01}, \dots, z_{0k})$ over \overline{D} . We shall fix K.

We next introduce a function of t whose derivative at t=T is very large. Let $\beta \in C^2(-\infty, 0]$ satisfy $0 \le \beta \le 1$ and $\beta(0) = \beta'(0) = 1$. For L > 1 we set $\beta_L(t) = a\beta(L(t-T))/2$. We now define Φ by

$$\Phi(s,z) = W(s,z) - \Xi(s,z) \quad \text{with} \quad \Xi(s,z) = \sum_{i=1}^{k} P_i(z_i) + \beta_L(s_1).$$

By the choice of β_L the function $\varphi(t, z) = \Phi(t, \dots, t, z)$ would attain its strict maximum M - a/2 at (T, z_0) over \overline{U} . Let Φ_δ be as in (4), i.e.

$$\Phi_{\delta}(s,z) = W(s,z) - \Xi_{\delta}(s,z) \quad \text{with} \quad \Xi_{\delta}(s,z) = \Xi(s,z) + \sum_{i=2}^{\kappa} (s_i - s_i)^2 / \delta.$$

By Lemma 3 a maximizer (t_{δ}, z_{δ}) of Φ_{δ} over $[T - \varepsilon, T]^k \times \overline{D}$ would converge to (T, \dots, T, z_0) as $\delta \rightarrow 0$.

Since u_i is a subsolution of (1) in $Q'_i = (T - \varepsilon, T) \times D_i$ and since

 $u_i(t, x) - \Xi_{\delta}(t_{\delta i}, \dots, t_{\delta i-1}, t, t_{\delta i+1}, \dots, t_k, z_{\delta i}, \dots, z_{\delta i-1}, x, z_{\delta i+1}, \dots, z_{\delta k})$ attains its maximum at $(t_{\delta i}, z_{\delta i})$ over Q'_i (as a function of (t, x)), the inequality (2) yields

(7_i) $b_i(\delta) + f_i(\delta) \le 0$ with $f_i(\delta) = F_{i*}(t_{\delta i}, z_{\delta i}, u_i^*(t_{\delta i}, z_{\delta i}), \nabla P_i(z_{\delta i}), \nabla^2 P(z_{\delta i}))$. Here, $b_1(\delta) = (\beta_L)_i(t_{\delta 1}) + 2\sum_{j=2}^k (t_{\delta 1} - t_{\delta j})/\delta$ and $b_i(\delta) = -2(t_{\delta 1} - t_{\delta i})/\delta$ for $2 \le i \le k$. Adding (7_i) from i=1 to k yields

$$(\beta_L)_i(t_{\delta 1}) + \sum_{i=1}^k f_i(\delta) \leq 0.$$

Since $t_{\delta_i} \rightarrow T$ and $z_{\delta} \rightarrow z_0$, letting $\delta \rightarrow 0$ would yield

(8)
$$La/2 + \sum_{i=1}^{k} F_{i*}(T, z_{0i}, u_{i}^{*}(T, z_{0i}), \nabla P_{i}(z_{0i}), \nabla^{2} P_{i}(z_{0i})) \leq 0$$

provided that

(9)
$$\lim_{\delta \to 0} u_i^*(t_{\delta_i}, z_{\delta_i}) = u_i^*(T, z_{0i}) \quad (1 \le i \le k).$$

Since $\nabla P_i(z_{0i}) = 0$ implies $\nabla^2 P_i(z_{0i}) = 0$ and since z_0 is independent of L, the inequality (8) contradicts (3) for large L. Thus w is left accessible at (T, y_0) .

It remains to prove (9). Since u_i^* is u.s.c. and Ξ is continuous, (5) yields (9).

5. Comparison theorem up to terminal time. Suppose that F = F(t, r, p, X) is continuous and degenerate elliptic on $J_0 = (0, T] \times \mathbb{R} \times (\mathbb{R}^n \setminus \{0\}) \times \mathbb{S}^n$. For each M > 0 there is a constant $c_0 = c_0(n, T, M)$ such that $r \mapsto F(t, r, p, X) + c_0 r$ is nondecreasing for all $(t, r, p, X) \in J_0$ with $|r| \leq M$. Suppose that $-\infty < F_*(t, r, 0, O) = F^*(t, r, 0, O) < \infty$. Let u and v be respectively, sub- and supersolutions of (1) in Q with bounded Ω . If $u^* \leq v_*$ on the parabolic boundary $\partial_p Q = \{0\} \times \Omega \cup [0, T] \times \partial \Omega$, then $u^* \leq v_*$ on Q.

This is proved in [1, Theorem 4.1] by extending Ishii's lemma ([8, Proposition IV. 1], [1, Proposition 3.1]) up to t=T [1, Lemma 3.1]. It turns out that $u^* \le v_*$ for t < T can be proved just by using original Ishii's lemma [1, Proposition 3.2] if we modify [1, Lemma 4.3]. To get $u^* \le v_*$ up to

t=T we need to apply the Accessibility theorem. We just indicate how to alter the proofs of [1, Lemma 4.3 and Theorem 4.1].

In the statement of [1, Lemma 4.3] we should replace ψ by

$$\psi_{\alpha}(t, x, y) = \phi(x-y) + \alpha/(T-t)$$

for arbitrary fixed $\alpha > 0$. One can carry out the proof of Case 1 with ψ_{α} by using [1, Proposition 3.2] since $\bar{t} < T$ and $\partial \psi_{\alpha}/\partial t > 0$. In Case 2 we should replace $\tilde{\psi}$ and Φ_{η} by

 $\tilde{\psi}(t, x, y) = \psi_{\alpha}(t, x, y) + (\bar{t} - t)^2,$

$$\Phi_{\eta}(t, x, y) = w(t, x, y) - \phi(x - y - \eta) - (\bar{t} - t)^2 - \alpha/(T - t)$$

ly. The Case 2a should be

respectively. The Case 2a should be

'For some $\kappa > 0$ there is $(t_{\eta}, x_{\eta}, y_{\eta}) \in Q_{T}$ with $x_{\eta} - y_{\eta} = \eta$ such that $\Phi_{\eta}(t_{\eta}, x_{\eta}, y_{\eta}) = \sup\{\Phi_{\eta}(t, x, y) ; x, y \in \Omega, |x - y| < \kappa, t \in (0, T]\}$ for all $\eta \in \mathbb{R}^{n}$ with $|\eta| < \kappa$.'

In the proof for Case 2a we replace f by

$$f(\eta) = \sup\{w(t_{\eta}, x, y) - (\bar{t} - t_{\eta})^2 - \alpha/(T - t_{\eta}); x, y \in \Omega, x - y = \eta\}.$$

We argue in the same way as in the original proof and obtain

 $\sup \{w(t, x, y) - (\bar{t} - t)^2 - \alpha/(T - t); |x - y| < \kappa, t \in (0, T]\} = w(\bar{t}, \bar{x}, \bar{x}) - \alpha/(T - \bar{t})$ in place of (4.9). Since $\bar{t} < T$, we apply [1, Proposition 3.2] to complete the proof for Case 2a. Again we should note $\partial \psi_a/\partial t > 0$ to get (4.12b). The remaining Case 2b can be treated parallely if we replace $Q_{\bar{t}}$ by Q_T . We note that the maximum of Φ_0 is not attained at $t \neq \bar{t}$ (<T) because of the term $(\bar{t} - t)^2$ in $\tilde{\psi}$. We thus observe that [1, Lemma 4.3] with ψ_a holds for all $\alpha > 0$.

In the proof of [1, Theorem 4.1] one should replace ψ by ψ_{α} . (All ϕ after the definition of w^{ϵ} were misprints of ψ so it should also be replaced by ψ_{α} .) We argue in the same way as in the original proof with ψ replaced by ψ_{α} and end up with $w^{\epsilon} \leq \psi_{\alpha}$ or

 $u(t, x) - v(t, y) \le a_{\lambda}(|x-y|^2 + \delta)^{1/2} + b_{\lambda} + \alpha/(T-t)$ on Q_T . Sending $\delta \to 0$, $\alpha \to 0$ and taking infimum for $\lambda \in A$ we obtain (10) $u(t, x) - v(t, y) \le m(|x-y|)$ for $t < T, x, y \in \Omega$, where *m* is some modulus.

Since u and -v are subsolutions of (1) with some F satisfying (3) on Q, the Accessibility theorem with k=2 implies that u(t, x)-v(t, y) is left accessible at $(T, x, y), x, y \in \Omega$. We now conclude that (10) holds up to t=T which yields $u^* \leq v_*$ on Q.

Remark. In [5] the comparison theorem is extended to more general equations on arbitrary domains and the proof is simplified. However, since [5, Proposition 2.4] actually needs t < T in the definition of α , the comparison [5, (2.2) and (4.2)] holds only for t < T from the proof given there. Fortunately one applies the Accessibility theorem to get [5, (2.2) and (4.2)] up to t=T so main results in [5] are correct as stated.

6. Ishii's lemma. We note that the conclusion of [1, Lemma 3.1] is correct if we assume that F and -G(t, x, -r, -p, -X) satisfy (3) at t=T for all $x \in \Omega$. Indeed, we may assume that U_T is bounded and that

No. 10]

(11)
$$\Phi(t, x, y) = u(t, x) - v(t, y) - \phi(t, x, y)$$

attains its strict maximum over \overline{U}_r as in [1, p. 763]. For $\alpha > 0$ we introduce $\Phi_{\alpha} = \Phi - \phi_{\alpha}$ with $\phi_{\alpha} = \phi + \alpha/(T-t)$ which is different from that in [1, p. 763]. Let $(t_{\alpha}, x_{\alpha}, y_{\alpha})$ be a maximizer of Φ_{α} on \overline{U}_r so that $t_{\alpha} < T$. Suppose that $t_{\alpha} \rightarrow t', x_{\alpha} \rightarrow x', y_{\alpha} \rightarrow y'$ by taking a subsequence $\alpha = \alpha_j \rightarrow 0$. For t < T we observe

$$\begin{split} \varPhi(t, x, y) = &\lim_{a \to 0} \varPhi_a(t, x, y) \leq \liminf_{a \to 0} \varPhi_a(t_a, x_a, y_a) \leq \liminf_{a \to 0} \varPhi(t_a, x_a, y_a) \\ \leq &\limsup_{a \to 0} \varPhi(t_a, x_a, y_a) \leq \varPhi(t', x', y') \leq \varPhi(T, \overline{x}, \overline{y}) \end{split}$$

since $\Phi_{\alpha} \leq \Phi$ and Φ is u.s.c. Since u(t, x) - v(t, y) is left accessible at $(T, \overline{x}, \overline{y})$, this implies

(12)
$$\lim_{\alpha \to 0} \Phi(t_{\alpha}, x_{\alpha}, y_{\alpha}) = \Phi(T, \overline{x}, \overline{y}), \quad x' = \overline{x}, y' = \overline{y}.$$

Since u and -v are u.s.c., (12) yields

(13)
$$\lim_{\alpha \to 0} u(t_{\alpha}, x_{\alpha}) = u(T, \overline{x}), \quad \lim_{\alpha \to 0} v(t_{\alpha}, y_{\alpha}) = v(T, \overline{y}).$$

We apply Ishii's lemma [1, Proposition 3.2] at (t_a, x_a, y_a) and send $\alpha \rightarrow 0$ to get the desired result [1, (3.4a) and (3.4b)] since $\partial \phi_a / \partial t \ge \partial \phi / \partial t$.

The proof given in [1, p. 763] seems to be wrong because there may not exist the barrier m and the convergence in [1, p. 764, line 3] is not clear. However, as shown above [1, Lemma 3.1] is correct with extra assumptions of type (3) which causes no problem for the application in [1, Lemma 4.3].

By the way the proof of [1, Proposition 3.2] contains a minor technical error which can be easily fixed. In [1, p. 762, line 9–3 from below], the property that F(t, x, r, p, X) and G(t, x, r, p, X) are non *increasing* in r is used although it is not assumed in [1, Proposition 3.2]. This extra assumption is unnecessary because

(14)
$$\lim u^{\varepsilon_j}(t_j, x_j) = u(\bar{t}, \bar{x}), \quad \lim v_{\varepsilon_j}(t_j, y_j) = v(\bar{t}, \bar{y})$$

with $t_j = t_{k_j}^{i_j}$, $x_j = x_{k_j}^{i_j}$, \cdots , where $\{\varepsilon_j\}$, $\{k_j\}$ are taken as in [1, p. 762, line 8]. We may assume $t_j \rightarrow \bar{t}$, $x_j \rightarrow \bar{x}$, $y_j \rightarrow \bar{y}$. As in the proof of (5), one can prove $\Phi(\bar{t}, \bar{x}, \bar{y}) = \lim_{j \rightarrow \infty} \Phi_{\varepsilon_j, k_j}(t_j, x_j, y_j)$

with $\Phi_{\varepsilon,k}(t, x, y) = \Phi(t, x, y) - l_k^{\varepsilon}t - p_k^{\varepsilon} \cdot x + q_k^{\varepsilon} \cdot y$ since $u \le u^{\varepsilon}$ and $v \ge v_{\varepsilon}$. This yields (14) since u and -v are u.s.c. We thus conclude that [1, Proposition 3.2] is correct as it stated.

7. Extension theorem. Suppose that u is a subsolution of (1) in Q_0 . Then u^* is a subsolution of (1) in Q.

The statement in [1, Lemma 5.7] is incorrect and should be replaced by this theorem. When u is continuous in Q this is proved in [9].

Proof. We may assume that Ω is bounded and that $u^* - \psi$ attains its strict maximum at (T, x_0) over Q with $\psi \in C^2(Q)$. Let (t_a, x_a) be a maximizer of $u^* - \psi_a$ with $\psi_a = \psi + \alpha/(T-t)$ for $\alpha > 0$ so that $t_a < T$. Since u^* is left accessible at (T, x_0) we observe $t_a \rightarrow T$, $x_a \rightarrow x_0$ and $u^*(T, x_0) = \lim_{\alpha \to 0} u^*(t_a, x_a)$ (cf. (12), (13)). Letting $\alpha \rightarrow 0$ in (2) with $\psi = \psi_a$, $t = t_a$ and $x = x_a$ we get (2)

with ψ at (T, x_0) since $\partial \psi_a / \partial t > \partial \psi / \partial t$.

8. Localization lemma. (i) Suppose that u is a subsolution of (1) in Q_0 . Then for T' < T, u is a subsolution of (1) in $Q' = (0, T'] \times \Omega$. (ii) Suppose that v is a subsolution of (1) in Q. Then v is a subsolution of (1) in (0, T') $\times \Omega$ for T' < T.

Proof. We may assume that Ω is bounded. Suppose that $u^* - \psi$ attains its strict maximum at (t_0, x_0) over Q' for $\psi \in C^2(Q')$. Extend ψ to $\psi \in C^2(Q)$ and set $\psi_{\delta} = \psi + g(t)/\delta$ with $\delta > 0$ where g = 0 for $t < t_0$ and $g = (t - t_0)^3$ for $t \ge t_0$, so that $g \in C^2(\mathbf{R})$. Let (t_i, x_i) be a maximizer of $u^* - \psi_i$ over \overline{Q} , so that $t_{\delta} \ge t_0$. Then

(15)
$$(u^* - \psi)(t_0, x_0) = (u^* - \psi_\delta)(t_0, x_0) \le (u^* - \psi_\delta)(t_\delta, x_\delta) \le (u^* - \psi)(t_\delta, x_\delta)$$
or $g(t_\delta)/\delta + (u^* - \psi)(t_0, x_0) \le (u^* - \psi)(t_\delta, x_\delta).$

This implies that $g(t_{\delta})/\delta$ is bounded as $\delta \rightarrow 0$. Since $t_{\delta} \ge t_0$ we now observe $t_{\delta} \rightarrow t_0$. Since u^* is u.s.c. and $t_{\delta} \rightarrow t_0$, sending $\delta \rightarrow 0$ in (15) yields $x_{\delta} \rightarrow x_0$. This argument also yields $\lim_{\delta \downarrow 0} u^*(t_{\delta}, x_{\delta}) = u^*(t_0, x_0)$. Sending δ to zero in (2) with $\psi = \psi_{\delta}$ at (t_{δ}, x_{δ}) yields (2) with ψ at (t_0, x_0) since $\partial \psi_{\delta} / \partial t \ge \partial \psi / \partial t$. This completes the proof of (i). The part (ii) can be proved easily.

The Accessibility theorem and the Localization lemma yield:

9. Corollary. Suppose that u is a subsolution of (1) in Q. If F satisfies (3) for $(t, x) \in Q$, then u^* is left accessible at each $(t, x) \in Q$.

10. Miscellaneous remarks. We note that [1, Theorem 5.6] can be proved without using [1, Lemma 5.7] and sup convolutions. A direct proof is found in [2]. We also note that one can correct the proof of [1, Theorem 5.6] given in [1] if we use Theorems 2 and 7; we need to assume (3) at t=Tfor all $x \in \Omega$ in [1, Theorem 5.6].

By the way the equation [1, (1.6) or (5.14)] does not follow from [6]. The correct one is found in [4]. In [2] we actually need to assume a uniform bound of the gradient of T in (1.6) and that of ω in (2.13) to apply comparison results in [5].

References

- [1] Y.-G. Chen, Y. Giga, and S. Goto: Uniqueness and existence of viscosity solutions

- Y.-G. Chen, Y. Giga, and S. Goto: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential Geometry, 33, 749-786 (1991) (announcement: Proc. Japan Acad., 65A, 207-210 (1989)).
 —: Analysis toward snow crystal growth. Functional Analysis and Related Topics (ed. S. Koshi). Sapporo 1990, World Scientific, pp. 43-57 (1991).
 M. G. Crandall and R. Newcomb: Viscosity solutions of Hamilton-Jacobi equations at the boundary. Proc. Amer. Math. Soc., 94, 283-290 (1985).
 Y. Giga and S. Goto: Motion of hypersurfaces and geometric equations. J. Math. Soc. Japan, 44 (1992) (to appear).
 Y. Giga et al.: Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J., 40, 443-470 (1991).
 M. Gurtin: Towards a nonequilibrium thermodynamics of two-phase materials.

- Math. J., 40, 443-470 (1991).
 [6] M. Gurtin: Towards a nonequilibrium thermodynamics of two-phase materials. Arch. Rational Mech. Anal., 100, 275-312 (1988).
 [7] H. Ishii: A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations. Ann. Sc. Norm. Sup. Pisa, (IV) 16, 105-135 (1989).
 [8] H. Ishii and P.-L. Lions: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differential Equations, 83, 26-78 (1990).
- [9] D. Nunziante: Uniqueness of viscosity solutions of fully nonlinear second order parabolic equations with noncontinuous time-dependence. Differential Integral Equations, 3, 77-91 (1990).